task partitioning for multi core network processors n.
Skip this Video
Loading SlideShow in 5 Seconds..
Task Partitioning for Multi-Core Network Processors PowerPoint Presentation
Download Presentation
Task Partitioning for Multi-Core Network Processors

Task Partitioning for Multi-Core Network Processors

146 Views Download Presentation
Download Presentation

Task Partitioning for Multi-Core Network Processors

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Task Partitioning for Multi-Core Network Processors Rob Ennals, Richard Sharp Intel Research, Cambridge Alan Mycroft Programming Languages Research Group, University of Cambridge Computer Laboratory

  2. Talk Overview • Network Processors • What they are, and why they are interesting • Architecture Mapping Scripts (AMS) • How to separate your high level program from low level details • Task Pipelining • How it can go wrong, and how to make sure it goes right

  3. Network Processors • Designed for high speed packet processing • Up to 40Gb/s • High performance per watt • ASIC performance with CPU programmability • Highly parallel • Multiple programmable cores • Specialised co-processors • Exploit the inherent parallelism of packet processing • Products available from many manufacturers • Intel, Broadcom, Hifn, Freescale, EZChip, Xelerated, etc

  4. Lots of Parallelism • Intel IXP 2800: 16 cores, each with 8 threads • EZChip NP-1c: 5 different types of cores • Agere APP: several specialised cores • FreeScale C-5: 16 cores, 5 co-processors • Hifn 5NP4G: 16 cores • Xelerated X10: 200 VLIW packet engines • BroadCom BCM1480: 4 cores

  5. Pipelined Programming Model • Used by many NP designs • Packets flow between cores • Why do this? • Cores may have different functional units • Cores may maintain state tables locally • Cores may have limited code space • Reduce contention for shared resources • Makes it easier to preserve packet ordering Core Core Core Core

  6. An Example: IXP2800 • 16 microengine cores • Each with 8 concurrent threads • Each with local memory and specialised functional units • Pipelined programming model • Dedicated datapath between adjacent microengines • Exposed IO Latency • Separate operations to schedule IO, and to wait for it to finish • No cache hierarchy • Must manually cache data in faster memories • Very powerful, but hard to program

  7. 72 72 72 IXP2800 Stripe/byte align RDRAM 1 RDRAM 2 RDRAM 3 MEv2 1 MEv2 2 MEv2 3 MEv2 4 Rbuf 64 @ 128B S P I 4 or C S I X 16b MEv2 8 MEv2 7 MEv2 6 MEv2 5 XScale Core 32K IC 32K DC G A S K E T PCI (64b) 66 MHz 64b Tbuf 64 @ 128B 16b MEv2 9 MEv2 10 MEv2 11 MEv2 12 Hash 64/48/128 Scratch 16KB QDR SRAM 1 QDR SRAM 2 QDR SRAM 3 QDR SRAM 4 MEv2 16 MEv2 15 MEv2 14 MEv2 13 CSRs -Fast_wr -UART -Timers -GPIO -BootROM/SlowPort E/D Q E/D Q E/D Q E/D Q 18 18 18 18 18 18 18 18

  8. IXP2400 IXP2400 CSIX Fabric IXDP-2400 • Things are even harder in practice… • Systems contain multiple NPs! Packets from network Packets to network

  9. What People Do Now • Design their programs around the architecture • Explicitly program each microengine thread • Explicity access low level functional units • Manually hoist IO operations to be early • THIS SUCKS! • High level program gets polluted with low level details • IO hoisting breaks modularity • Programs are hard to understand, hard to modify, hard to write, hard to maintain, and hard to port to other platforms.

  10. The PacLang Project • Aiming to make it easier to program Network Processors • Based around the PacLang language • C-like syntax and semantics • Statically allocated threads, linked by queues • Abstracts away all low level details • A number of interesting features • Linear type system • Architecture Mapping scripts (this talk) • Various other features in progress • A prototype implementation is available

  11. Architecture Mapping Scripts • Our compiler takes two files • A high level PacLang program • An architecture mapping script (AMS) • PacLang program contains no low-level details • Portable across different architectures • Very easy to read and debug • Low level details are all in the AMS • Specific to a particular architecture • Can change performance, but not semantics • Tells the compiler how to transform the program so that it executes efficiently

  12. Design Flow with an AMS PacLang Program AMS Compiler Refine AMS Analyse Performance Deploy

  13. Advantages of the AMS Approach • Improved code readability and portability • The code isn’t polluted with low-level details • Easier to get programs correct • Correctness depends only on the PacLang program • The AMS can change the performance, but not the semantics • Easy exploration of optimisation choices • You only need to modify the AMS • Performance • The programmer still has a lot of control over the generated code. • No need to pass all control over to someone else’s optimiser

  14. AMS + Optimiser = Good • Writing an optimiser that can do everything perfectly is hard • Network Processors are much harder to optimise for than CPUs • More like hardware synthesis than conventional compilation • Writing a program that applies an AMS is easier • AMS can fill in gaps left by an optimiser • Write an optimiser that usually does a reasonable job • Use an AMS to deal with places where the optimiser does poorly • Programmers like to have control • I may know exactly how I want to map my program to hardware • Optimisers can give unpredictable behaviour

  15. An AMS is an addition, not an alternative to an automatic optimiser! • This is a sufficiently important point that it is worth making twice

  16. What can an AMS say? • How to pipeline a task across multiple microengines • What to store in each kind of memory • When to move data between different memories • How to represent data in memory (e.g. pack or not?) • How to protect shared resources • How to implement queues • Which code should be considered the critical path • Which code should be placed on the XScale core • Low level details such as loop unrolling and function inlining • Which of several alternative algorithms to use And whatever else one might think of

  17. AMS-based program pipelining • High-level program has problem-orientated concurrency • Division of program into tasks models the problem • Tasks do not map directly to hardware units • AMS transforms this to implementation-oriented concurrency • Original tasks are split and joined to make new tasks • New tasks map directly to hardware units Hardware Task Hardware Task AMS Hardware Task Hardware Task Compiler User Task Hardware Task Hardware Task User Task Hardware Task Hardware Task Hardware Task Hardware Task Hardware Task Hardware Task

  18. Task Pipelining • Convert one repeating task into several tasks with a queue between them A; B; C; Pipeline Transform A; B; C;

  19. Pipelining is not always safe • May change the behaviour of the program: 1,2,1,2,... q.enq(1); q.enq(2); Pipeline Transform Iterations of t1 get ahead of t2 1,1,2,2,... Elements now written to queue out of order! q.enq(1); q.enq(2); t2 t1

  20. Pipelining Safety is tricky (1/3) • Concurrent tasks interact in complex ways q2.enq(q1.deq); passes values from q1 to q2 1,1,... 1,1,2,2,... values can appear on q2 out of order q1 q2 q1.enq(1); q2.enq(2); Pipeline split point

  21. Pipelining Safety is tricky (2/3) • Concurrent tasks interact in complex ways q1.enq(3); q2.enq(4); t3 q1 says: 1,1 written before 3. q2 says: 4 written before 2. t4 says: 3 written before 4. unsplit task says: 2 written before 1,1. This combination not possible in the original program. 1,1,3,... 4,2,2,... q2 q1 q1.enq(1); q2.enq(2); Pipeline split point

  22. q2.enq(q1.deq); q1.enq(q2.deq); 1,1,... 1,1,2,2,... 1,1,2,2 2,2,... q1 q2 q1 q2 q1.enq(1); q2.enq(2); q1.enq(1); q2.enq(2); Pipeline split point Pipeline split point Pipelining Safety is tricky (3/3) Unsafe Safe

  23. Checking Pipeline Safety • Difficult for programmer to know if pipeline is safe • Fortunately, our compiler checks safety • Rejects AMS if pipelining is unsafe • Applies a safety analysis that checks that pipelining cannot change observable program behaviour • I won’t subject you to the full safety analysis now • Read the details in the paper

  24. ARP Classify IP Options Rx Tx IP ICMP Err Task Rearrangement in Action IP Options + ARP +ICMP Err Classify + IP(1/3) Tx Rx IP(2/3) IP(2/3)

  25. The PacLang Language • High level language, abstracting all low level details • Not IXP specific – can be targeted to any architecture • Our toolset can also generate Click modules • C-like, imperative language • Static threads, connected by queues • Advanced type system • Linearly typed packets – allow better packet implementation • Packet views – make it easer to work with multiple protocols

  26. Performance • One of the main aims of PacLang • No feature is added to the language if it can’t be implemented efficiently • PacLang programs run fast • We have implemented a high performance IP forwarder • It achieves 3Gb/s on a RadiSys ENP2611, IXP2400 card • Worst case, using min-size packets • Using a standard longest-prefix-match algorithm • Using only 5 of the 8 available micro-engines (including drivers) • Competitive with other IP forwarders on the same platform

  27. Availability • A preview release of the PacLang compiler is available • Download it from Intel Research Cambridge, or from SourceForge • Full source-code is available • A research prototype, not a commercial quality product • Runs simple demo programs • But lacks many features that would be needed in a full product • Not all AMS features are currently working

  28. A Tangent: LockBend • Abstracted Lock Optimisation for C Programs • Take an existing C program • Add some pragmas telling the compiler how to transform the program to use a different locking strategy • Fine grained, ordered, optimistic, two phase, etc • Compiler verifies that program semantics is preserved Compiler LockBend Pragmas Program with Optimised Locking Strategy Legacy C Program