180 likes | 440 Views
CH17 人工智慧. 何謂人工智慧 人工智慧的定義 人工智慧的發展 人工智慧技術的介紹. 17.1 何謂人工智慧. 簡單的回顧十多年來的「人機大戰」 在 1996 年 國際象棋大師卡斯帕羅夫 (Garry Kasparov) 與電腦“深藍 (Deep-Blue)” 展開交鋒,結果卡斯帕羅夫以 4 比 2 宣告勝利。 到了 1997 年 經過 IBM 一年多的研究與改進,“更深的藍 ( 深藍 Ⅱ)” 誕生,並再次與卡斯帕羅夫對弈,深藍 Ⅱ 擊敗卡斯帕羅夫,此結果震驚世界。 2003 年 2 月
E N D
CH17 人工智慧 何謂人工智慧 人工智慧的定義 人工智慧的發展 人工智慧技術的介紹
17.1 何謂人工智慧 簡單的回顧十多年來的「人機大戰」 在1996年 國際象棋大師卡斯帕羅夫(Garry Kasparov)與電腦“深藍(Deep-Blue)”展開交鋒,結果卡斯帕羅夫以4比2宣告勝利。 到了1997年 經過IBM一年多的研究與改進,“更深的藍(深藍Ⅱ)”誕生,並再次與卡斯帕羅夫對弈,深藍Ⅱ擊敗卡斯帕羅夫,此結果震驚世界。 2003年2月 卡斯帕羅夫再度挑戰電腦,最終與IBM超級計算機“青年(Junior)”戰成3比3平。 2003年11月 在紐約舉行的人機大戰較量中,卡斯帕羅夫與X3D-Fritz電腦戰成2比2平。
最近,在2011年2月17日 美國IBM超級電腦「華生」(Watson)在遊戲節目「Jeopardy!」的「人機大戰」中,大獲全勝。 這次「人機大戰」中所涵蓋的題目包括歷史、文化、文學、科學等領域 「華生」在比賽中並未連接網路,而是藉由極高速的多重演算得出答案。 三個參賽者事先取得一組答案,從中推測要問的問題,鬥快按鈴搶答。 「華生」的成功,顯示人工智慧已有更進一步的發展,未來可能可以解答更艱難的問題。 簡單的說,人工智慧(artificial intelligence, AI)就是研究如何讓電腦有意識、能推理並做出相對應的行動的一個學門議題。
行為類似人類的人工智慧 具代表的判別方法 在1950年由杜林(Alan Turing 1950)所提出的杜林測試方法 詢問者提出問題後,由電腦程式是被詢問者 ,經由電腦回答後,如果詢問者無法分辨在 另一端回答的是人或者是電腦程式的話,則 表示這個電腦程式通過了杜林測試
理性行為的人工智慧 在「理性行為的人工智慧」系統中 強調的則是依照某些已知的信念完成某些目標的動作。 因此,在這個方向整個重點著重在「是否能正確的推論」。 而在此部分,最具代表的產物就是代理人(Agent) 代理人是一種能理解與行動的電腦程式。 例如:當詢問者告訴代理人今天下雨,則代理人會回覆詢問者需要帶雨傘出門。
理性行為的人工智慧(Cont.) 在這個體系下,發展人工智慧有許多優點 第一 相較於「思考方向」的人工智慧系統,「理性的行為」是較一般化的,依據發展的重點而言,可以正確的推論是明確且較易達成的目標。 第二 建立出來的系統,與「思考方向」的人工智慧系統相比較的話,是比較經得起考驗的,因為理性的行為是比較明確的。 第三 人類的行為在特定的環境下是比較容易被表達的。 在本章所介紹的人工智慧技術皆屬於「理性行為的人工智慧」
人工智慧的蓬勃發展 在人工智慧的定義 可以瞭解如果要發展出能像人類一樣可以思考人工智慧是非常困難的 因此,大約在1990年代 科學家以現實的策略代替樂觀的想像,把人工智慧的研究目標轉向發展電腦的智慧能力,以更有效地解決一些複雜的問題,而不再強求要發展出像人類一樣的智慧。 這使得人工智慧的研究漸漸走出低潮,新理論與新技術相繼提出,人工智慧的研究也更蓬勃地發展起來。
資料與資訊 資料(Data) 資訊(Information) 資訊的來源:資料 資料經處理後的結果 資訊 例子:A股票股價 Data:Information: 10日: 29元 A股票and [10日-13日] 11日: 29.5元 上漲 12日: 29.9元 13日: 31元
人工智慧 何謂人工智慧(Artificial Intelligence) 簡單而言,就是讓電腦能有近似人腦的能力 正式而言,計算能力的研究 知覺 推理 行動 $^%&.. 別碰我... 你看起來 像壤人...
人工智慧領域 電腦視覺 機器人 自然語言 理解 近似搜尋 AI 語音辦識 神經網路 模糊理論 專家系統
人機大戰 1997年人工智慧大事 IBM Deep-Blue(深藍)擊敗世界棋王 人類下棋的特性 模擬對手下幾步會採取的策略 應用著名棋局中的模式 個人下棋的經驗 學習對手的下棋模式 例子: 下象棋
審局函數 把盤面局勢的利弊得失加以數值化 作為比較形勢優劣的基礎 一般常見的考慮因素如下: 位置重要性 棋子靈活度 威脅與保護
子力 我們給於每一兵種的基本價值如下: 將(帥) 2000 士(仕) 40 象(相) 40 車(俥) 200 馬(馬) 90 包(炮) 90 卒(兵) 10
位置重要性 8 9 8 10 9 10 8 9 8 9 9 8 11 12 11 8 9 9 8 8 7 11 11 11 7 8 8 7 8 10 11 11 11 10 8 7 6 7 6 10 10 10 6 7 6 6 9 6 9 9 9 6 9 6 5 6 5 8 8 8 5 6 5 2 6 5 8 8 8 5 6 2 4 4 3 8 1 8 3 4 4 1 4 2 7 7 7 2 4 1 車
人機大戰 電腦下棋 利用超強的計算能力 - 計算之後可能的下棋局勢 利用強大的儲存能力 - 將所有棋局模式加以儲存 利用機器學習的能力 - 學習對手下棋的模式 人與電腦到底誰厲害 叫阮第一名
機器學習 機器學習是人工智慧的核心!! 由例子中學習 例如: 燕子會飛,麻雀會飛 -> 鳥會飛