Data treatment

1 / 37

# Data treatment - PowerPoint PPT Presentation

Data treatment . Collect 257 days, (2010/12~2011/1, 2011/3/15~2011/9) Outage raw data 475 times Case I: timer setting => 253 times Case II: insufficient radiation => 73 times Case III: system/ human error => 149 times Determine whether interpolation or not Data treatment algorithm.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Data treatment' - cecil

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Data treatment
• Collect 257 days, (2010/12~2011/1, 2011/3/15~2011/9)
• Outage raw data 475 times
• Case I: timer setting => 253 times
• Case II: insufficient radiation => 73 times
• Case III: system/ human error => 149 times
• Determine whether interpolation or not
• Data treatment algorithm
Data treatment algorithm

Tstart: start time of outage, Tend: end time of outage, Tdur=Tstart - Tend

T={12:00, 13:00, 5:00, 7:00}, τ1= 10min, τ2=5min

Voff: the last voltage before outage Von: the first voltage after outage

S(AB) <-- △VoltageAB/ △tAB, S(BC) <-- △VoltageBC/ △tBC

========================================

Case1

IfTstart = T{i} ± τ 1 ANDTdur < τ2 then interpolate

Included;

Case2

if {Voff <11.6 AND Von>12.0 AND date < 2010/3/14}

OR {Voff <11.2 AND Von>11.5 AND date > 2010/3/14}

if 4.53

else Included ;

Case 3

elseifTstart ∩ {t| 7pm

else interpolate

Included;

outage

V

B

C

A

D

t

Modeling
• B(t) = B(t-1) + λ(t) – μ(t) ,if λ(t) – μ(t) ＜24

Bmax, drop(t) = λ(t) – μ(t)-24 ≧ 0

• B(t): energy in battery
• μ(t): energy consumption
• Bmax: energy in fully charged battery

B(t)

λ(t)

μ(t)

Derive [ λ(t) – μ(t)]
• Collect continued 2 days CASEII outage: 35
Derive Bmax
• Collect outage day due to insufficient radiation & work over last night : 18
• B(t-1) = actual lifetime – {λ(t) – μ(t)} < 15.78
Testing Bmax =15.78
• Collect outage day after continuous days which past nights
• 6 data sets (4/4, 4/17, 5/13, 5/24, 5/28, 9/21, )
• Sufficient for past one day : radiation > 12.58
• Outage data 18 + past w/ insufficient radiation 31 = 49 day
Derive B(t)
• Collect CaseII outage and occur in night:
• Record Lifetime vs Battery voltage(V)
• Lifetime = 30.896V2 -727.51V + 4284
Modified Modeling
• B(t) = B(t-1) + λ(t) – μ(t) ; if B(t-1) + λ(t) – μ(t)

Bmax, drop(t) = λ(t) – μ(t); if B(t-1) + λ(t) –

μ(t) ≧ Bmax

• Bmax = 25hr
Preliminary analysis
• Case I (253)=> interpolate 108 +81days
• Case II (73)=> discard 18 days
• Data ambiguous
• High amount radiation but short life time
• Case III (149)=> discard 8+9 days
• Empty:2 +3 (12/29 30, 8/5 8 9 )
• manual:3 (6/7, 7/16, 8/18)
• unknown:1 (5/11)
• no log:4 (12/10 14, 1/7, 3/14)
• Keep 224 out of 257 days for modeling
Data treatment algorithm

Tstart: start time of outage, Tend: end time of outage, Tdur=Tstart - Tend

T={12:00, 13:00, 5:00, 7:00}, τ1= 10min, τ2=5min

Voff: the last voltage before outage Von: the first voltage after outage

S(AB) <-- △VoltageAB/ △tAB, S(BC) <-- △VoltageBC/ △tBC

========================================

IfTstart = T{i} ± τ 1 ANDTdur < τ2 then interpolate

else if {Voff <11.6 AND Von>12.0 AND date < 2010/3/14} OR

{Voff <11.2 AND Von>11.5 AND date > 2010/3/14}

if 4.53

elseifTstart ∩ {t| 7pm

else interpolate

outage

V

B

C

A

D

t

III outage
• Occur 42 days in 165 days
• Reboot: 6
• Error: 3
• Empty: 13
• Manual: 3
• Unknown: 4(5/7, 9, 10, 11)
• No log: 12
8 days filtered in 42 days
• Empty:2(12/29 30),
• manual:1(6/7),
• unknown:1(5/11),
• no log:4(12/10 14, 1/7, 3/14)
• 10,14,29,30 Dec., 7 Jan., 14 Mar., 11 May, 7 Jun.

III類斷電

No

No

Yes

No

Yes

II類斷電

Yes

Yes

No

I類斷電

No

Yes

No

interpolation

interpolation

Yes

smooth最大斜率差0.015

=>只要斜率差>0.015,挑出來,不能用

Related works
• Design, modeling and capacity planning for micro-solar power sensor networks, IPSN08
• Cloudy computing: leverage weather forecasts in energy harvesting sensor systems, secon10
• Solarstore: enhancing data reliability in solar-powered storage-centric sensor network, mobisys09
• Steady and Fair rate allocation for rechargeable sensors in perpetual sensor networks, Sensys08
• Networking low-power energy harvesting devices: measurements and algorithm, infocom11
Mobisys09
• 計算是否有多餘電量來讓系統備份data
• If 目前電池電量>(平均消耗功率/平均充電功率)x電池容量, 就可以保持供電
• Evaluation data loss (無備份,always備份,電池滿才備份)
Sensys 08
• 用太陽能收到多少來決定data collection rate
• 讓node都不會因為傳太快而沒電
• Centralized/distributed algorithm
Infocom11
• 室內光產生電源,實際測量8個環境
• Model 分三類:可預測,半預測,隨意型
• Ep(i) = a x E(i-1) +(1-a)Ep(i-1), 0
• 但誤差還是很大
• 所以在某些環境採用SECON10 天氣model,誤差比較小
IPSN08
• Solar Model
• Network & HW design
• Sizing and selection
• 實際去量測每個component profile
• 比較用不同電池壽命多久
• Evaluation for two test deployments
• 市區佈建 VS 森林佈建
Secon10
• 分析一整年的資料,搭配氣象局資料
• 日照輻射(W/m2)與充電功率(W)=>線性關係
• Solar power = 0.0444*radiation -2.65
• 每日充電能量(W) vs時間(hr)=>2次方程式
• Power = a*(Time+b)^2 + c
Solarstore: enhancing data reliability in solar-powered storage-centric sensor network, mobisys09
• Networking low-power energy harvesting devices: measurements and algorithm, infocom11
Outage III algorithm
• if (abs(mAB-mBC)>Threshold) || (abs(mBC-mCD)>Threshold)

filter out

Threshold = 0.019

• else if(13V<斷電前電壓) &&(duration > 19600 )

filter out

• else if(12V<斷電前電壓<12.5V) &&(duration > 10800 )

filter out

• else if (斷電前電壓<12V) &&(duration > 3600)

filterout

How to filter for III類
• 一階微分用斜率來判斷
• |mAB-mBC|< δ
• |mBC-mCD|< δ
• 二階微分
• |F’’ABC- F’’BCD| < δ

D

C

B

A

C

B

D

A