1 / 33

Syntheses of high-spin and cluster molecules

Hiroki OSHIO (University of Tsukuba). Syntheses of high-spin and cluster molecules. Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi, Yamashita ( Univ. of Tsukuba ) Dr. M. Nakano (Osaka Univ.) HF-EPR Prof. H. Nojiri (Okayama Univ.)

Download Presentation

Syntheses of high-spin and cluster molecules

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hiroki OSHIO (University of Tsukuba) Syntheses of high-spin and cluster molecules Syntheses and Magnetic measurements Dr. M. Nihei,A. Yoshida, K. Koizumi, Yamashita (Univ. of Tsukuba ) Dr. M. Nakano (Osaka Univ.) HF-EPR Prof. H. Nojiri (Okayama Univ.) Low-temperature Magnetic measurements Profs. A. Yamaguchi and Ishimoto (ISSP, Univ. of Tokyo) Solid State NMR Profs Y. Fujii (Fukui Univ.) and T. Goto (Kyoto Univ.) Workshop on Nano-magnets at Kyoto, Dec. 1 - 4, 2003

  2. Syntheses of · SMMs of Ferrous Cubes: Structurally controlled magnetic anisotropy · Mixed Valence Fe clusters · Hetero-metal SMM

  3. [Mn12O12(OAc)16(H2O)4] [FeII4(sae)4(MeOH)4] S = 8, D = -0.28 cm-1 S = 10, D = –0.46 cm-1 L. Thomas et al., Nature 1996, 383, 145 H. Oshio et al., J. Am. Chem. Soc. 2000, 112, 12602 Single Molecule Magnets [Mn(III,IV)12O12(O2CR)16(H2O)] (S = 10) (T. Lis, 1980) [Mn(III,IV)12O12(O2CR)16(H2O)4]- (S = 19/2) [Mn(III,IV)4O3X(O2CMe)(dbm)3] (S = 9/2) [Fe(III)8O2(OH)12(tacn)6]8+ (S = 10) [V(III)4O2(O2CR)7(L-L)]+ (S = 3) D. N. Hendrickson, G. Christou, and D. Gatteschi (1993)

  4. Syntheses of SMM Relatively high-spin ground state Negative D value DE Magnetization Direction DE = |D|Sz2 DE :Energy barrier to reorientate between two possible directions of magnetizations D : Zero Field Splitting parameters

  5. Accidental orthogonality Strategy for the High-spin Molecule Ferromagnetic Interactions by LMCT interactions AGK TheoryP. W. Anderson (1959), J. B. Goodenough (1958), J. Kanamori (1959) Strict orthogonality

  6. High-spin Cluster Orthogonal arrangements of the magnetic orbitals

  7. Fe(II) Cube of [FeII4(sae)4(MeOH)4] • triclinic P1- • a = 13.3625(7) Å, b = 13.7572(7) Å, c = 14.2004(7) Å • = 66.538(1)°, b = 74.973(1)°, g = 71.105(1), V = 2239.92(1) Å3, Z = 2 R1 = 0.0477, wR2 = 0.0959 S = 8 (4x2) J. Am. Chem. Soc. 2000. 122. 12603.

  8. AC measurements of [FeII4(sae)4(MeOH)4]

  9. Relaxation in [Fe4(sae)4(MeOH)4] with S =8 Ground State Ms = 0 Ms = 0 DE = |D|Sz2 Ms = -8 Ms = 8 t = t0exp(DE/kT) t = 1/(2pnAC) nAC : Freq. of AC Field T : Temp. of max. in c” DE = |D|Sz2= 64|D|

  10. Iron(II) cubes with S = 8 ground state SMM nonSMM nonSMM nonSMM [Fe4(sae)4(MeOH)4] [Fe4(sap)4(MeOH)4] [Fe4(3-MeO-sap)4(MeOH)4] [Fe4(sapd)4]

  11. Magnetization Experiments of High-spin Ferrous Cubes gD / cm-1 [Fe4(sae)4(MeOH)4] 2.126 -0.64 [Fe4(sap)4(MeOH)4] 2.261 +0.81 [Fe4(3-MeO-sap)4(MeOH)4] 2.243 +1.14 [Fe4(sapd)4] 2.180 +1.10

  12. Selected coordination bond distances (Å) in the cubes Equatorially compressed: D > 0 Elongated octahedron [Fe4(sae)4(MeOH)4] Fe(1)-O(1) 1.978(2) Fe(1)-O(2) 2.094(2) Fe(1)-N(1) 2.053(2) Fe(1)-O(4) 2.078(2) Fe(1)-O(9) 2.2908(18) Fe(1)-O(8) 2.2736(17) [Fe4(sap)4(MeOH)4]·2H2O Fe(1)-O(1) 2.029(2) Fe(1)-O(2) 2.045(2) Fe(1)-N(1) 2.127(2) Fe(1)-O(2)* 2.1616(15) Fe(1)-O(3) 2.2107(17) Fe(1)-O(2)* 2.2505(14) [Fe4(3MeO-msap)4(MeOH)4]·2MeOH Fe(1)-O(1) 1.991(5) Fe(1)-O(2) 2.037(4) Fe(1)-N(1) 2.104(6) Fe(1)-O(10) 2.137(4) Fe(1)-O(6) 2.238(4) Fe(1)-O(4) 2.242(5) [Fe4(bsap)4(MeOH)4] Fe(1)-O(1) 2.036(3) Fe(1)-O(2) 2.056(3) Fe(1)-N(1) 2.123(3) Fe(1)-O(2)* 2.159(3) Fe(1)-O(2) 2.259(2) Fe(1)-O(3) 2.263(3) strong ligand field Equatorially less compressed: D < 0 week ligand field

  13. Angular Overplap Model calculations ofEnergy splitting of the 5B2g state P = 0.5 week LF P = 1.0 strong LF week LF strong LF sap sae D < 0 D > 0 The variable p changes the equatorial ligand field strengths.

  14. Sign of DCube values sae: Equatorially compressed: DFe > 0: Orthogonal alignments of four ions with hard axis sap: equatorially less compressed: DFe < 0: Orthogonal alignments of four ions with easy axis

  15. [Fe4(3,5-Cl2-sae)4(MeOH)4] DE = 26 KD = -0.29 cm-1TB = 1.1 K

  16. [Fe4(5-Br-sae)4(MeOH)4] DE = 30 KD = -0.33 cm-1TB = 1.2 K

  17. SummaryStructurally controlled magnetic anisotropy • Compounds in red are SMM. • The g, C, and  values were obtained from temperature dependence of the magnetic susceptibility. D values were estimated by the analyses of magnetization data at 1.8 K, supposing the only S = 8 being populated. E and TB values were estimated from the ac magnetic susceptibility measurements.

  18. [FeIII3] [FeIII2] [FeII3FeIII] [NaFeIII6] [FeIIIFeII6] [FeIIFeIII6] New Cluster Molecules with higher nuclearity

  19. Ferric wheel of [NaFeIII6(5-MeO-sae)6(m2-OMe)]ClO4 +NaClO4 [FeIII3Cl2(5-MeO-sae)3 (m3-OMe)(MeOH)] (m3-alkoxo bridges)

  20. (m3-alkoxo bridge) [FeIIFeIII6(5-MeO-sae)6(m2-OMe)6]Cl2 7FeCl2·4H2O + 6H2(5-MeO-sae) + 2/7(t-Bu4N)(MnO4)  ? Spin frustrated system g(Fe3+) = 2.0 and g(Fe2+) =2.10(5) J(spoke) = -7.3 cm-1 and J(rim) = -8.7 cm-1

  21. [FeII6FeIII(5-MeO-saeH) 6(m3-OMe)6]Cl3 7FeCl2·4H2O + 6(5-MeO-saeH2) + 1/21(t-Bu4N)(MnO4)  m2-phenoxo bridges S = 29/2 and D = +0.53 cm-1 Angew.Chem. 2003.

  22. Next target molecules Air insensitive SMM Heteronuclear SMM The smallest SMM

  23. CuCl2·2H2O Hetero-nuclear SMM + MnCl2·4H2O [MnIII3(m-O)(Br-sap)3(H2O)3]Cl

  24. [MnIIICuII(Br-sap)2Cl(MeOH)] Mn Cu Selected Bond Distances (Å) Mn-Cl 2.616(4) Mn-O1S 2.658(9) Other bonds 1.871(5) - 1.973(6) Mn3+: Axially elongated octahedron for d4

  25. Magnetic susceptibility and magnetization data of [MnIIICuII(Br-sap)2Cl(MeOH)] Ferromagnetic interactions between Mn3+ and Cu2+ ions S = 5/2 ground state

  26. O Mn Cu dx2-y2 O dxy dz2 dxz dyz MO diagram of Mn3+-Cu2+ system Tetragonally elongated quasi D4h Square-planar quasi D4h dx2-y2 dz2 LMCT from O- dxy dxz dyz Mn3+ Cu2+ Strickt orthogonality

  27. Quasi-single Crystal HF-EPR OF [MnIIICuII(Br-sap)2Cl(MeOH)] 381.5 GHz 1/23/2 -5/2-3/2 -3/2-1/2 -1/21/2 H. Nojiri (Okayama Univ.) *Magnetic field is tilted 13° with respect to the principal axis.

  28. Plots of resonance fields (Hr) vs. the value of Ms [MnIIICuII(Br-sap)2Cl(MeOH)] g = 2.04 D = -1.70 cm-1 B40’= -0.0074 cm-1

  29. Single Crystal AC magnetic susceptibility [MnIIICuII(Br-sap)2Cl(MeOH)] Yamaguchi, Ishimoto (ISSP)

  30. Packing diagrams of [MnIIICuII(Br-sap)2Cl(MeOH)] ac projection view ab projection view bc projection view

  31. X No-spin tunneling at Hext=0 Integer Spin Half-Integer Spin Magnetization data for [MnIIICuII(Br-sap)2Cl(MeOH)] with S =5/2 ground state TB = 500 mK DE = 10.5 K Yamaguchi, Ishimoto (ISSP)

  32. N N 0 0 S -1 1 2 -2 -3 3 S -4 4 Tunneling 5 -5 -6 6 7 -7 Ms = -8 Ms = 8 Nano magnets Summary: Nano Magnets with different sizes Cu [MnIIICuII] S = 5/2with TB = 0.8 K Mn 4核:[FeII4] S = 8with TB = 1.1K 1.5 nm Fe 6核:[MnIII6] S = 12with TB = 1.0 K [FeII6FeIII] with S = 29/2 2.0 nm [MnIII4MnIV2CuII8(O)6] Strong correlated electron oxide clusters 2.5 nm ? [MnIII8MnIV4CuII8(O)16]

  33. Organizer Tadashi Sugawara (University of Tokyo) General Secretaries Hiroki Oshio (Tsukuba University) Kunio Awaga (Nagoya University)Kazuhito Hashimoto (Unrsity of Tokyo)

More Related