Light Through One Slit.
Related searches for Light Through One Slit
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
When light passes through a narrow slit, it spreads out in a way that is inconsistent with ray optics. If light consisted of “corpuscles” traveling in straight lines, as Newton thought, it should produce a narrow illuminated strip on the screen, rather than the broad pattern actually observed.
Newton lacked the technology to do such experiments, and so focused on the particle properties of light, anticipating 20th century physics in the 17th century.
There are an alternating pattern of bright and dark “fringes” that arise from the interference of light passing through the two slits.
Light from a heliumneon laser (l = 633 nm) illuminates two slits placed 0.40 mm apart. A viewing screen is placed 2.0 m behind the slits.
What are the distances Dy2 between the two m=2 bright fringes and Dy’2 between the two m=2 dark fringes?
A screen is placed 1.0 m behind a pair of slits, which are spaced 0.30 mm apart. When this system is illuminated by a certain frequency of monochromatic light, ten bright fringes are found to span a distance of 1.65 cm on the screen.
What is the wavelength of the light?
Problem: Observed fringes are not of equal brightness. ( see Lecture #7)
Choose the phase of the1st slit at the screen at t=0 to be 0. Then:
( see Lecture #7)
I3/I1
d (radians)
Three Slit InterferenceChoose the phase of the 1st slit at the screen at t=0 to be 0. Then:
( see Lecture #7)
IN/I1
d (radians)
1
0.8
N = 2
0.6
IN/I1N2
0.4
3
4
0.2
5
100



3
2
1
0
1
2
3
d (radians)
MultiSlit InterferenceN=5
( see Lecture #7)
IN/I1
3
4
N = 5
p
d (radians)
Phasors and SlitsN = 6
One can think of the light amplitudes from adjoiningslits as Phasors.
Adjacent phasors have a relative phase angle d = k d sin q. When d=0, the phasors add in a straight line. But there are some values of q for which the phasors add to zero, e.g., d=600.
The more slits are used, the more ways there are that the corresponding phasors can add to zero, “tacking” the interference pattern to zero at more and more places between 0<d<p.
# of zeroes = N1
http://www.ptolemy.eecs.berkeley.edu/eecs20/berkeley/phasors/demo/phasors.html
http://en.wikipedia.org/wiki/Phasor_%28physics%29
White Light of constructive interference from a diffraction grating are
Light with l1=400 nm and l2=700 nm.
A Grating SpectroscopeLight can be dispersed by wavelength using a diffraction grating. A grating spectroscope provides a way of making precise measurements of wavelength by noting the angular positions at which bright fringes occur. If photographic plates or CCDs are used to make a more permanent record, the device is called a grating spectrograph.
Atoms in a low pressure electrical discharge produce light with characteristic wavelengths that can be identified with a spectrograph.
Monochromatic light produces one fringe for each value of m.
Light containing more than one wavelength produces one fringe for each value of m>0 for each wavelength.
Light from a sodium lamp passes through a diffraction grating having 1000 slits per millimeter. The interference pattern is viewed on a screen 1.000 m behind the grating. Two bright yellow fringes are visible at distances of 72.88 cm and 73.00 cm from the central maximum.
Assuming that m=1, what are the wavelengths of these two fringes?
The mirrorlike surfaces can also be tilted to deliver more light intensity to average angle of the m=1 spectrum. This is called “blazing”.
Interestingly, some of the most colorful bird feathers and insect shells are, in effect, blazed reflection gratings.
A grating may also be arranged to reflect light rather than transmit it. Ruling parallel grooves in a mirrorlike metal surface produces such a grating.
NASA uses reflection gratings that are also curved mirrors,
“Superluminal” Quasar of constructive interference from a diffraction grating are
t=0
Saturn
16 light years
Mars
The Sun
t=1 year
Radio Telescope ArraysA line of parabolicdish radio receiversbehaves like a diffraction grating in reverse, giving highprecision locations of radio sources in the sky.
Processing the data with varying phases between dish signals produces dramatic high resolution images of the universe as viewed with radio waves.
White light passes through a diffraction grating and forms rainbow patterns on a screen behind the grating.
For each rainbow:
Christian Huygens of constructive interference from a diffraction grating are
(1629  1695)
Huygens’ PrincipleThe Dutch scientist Christian Huygens, a contemporary of Newton, proposed Huygens’ Principle, a geometrical way of understanding the behavior of light waves.
when light goes through a narrow slit, it spreads out to form a diffraction pattern.
Now, we want to understand this behavior in more detail.
For an open slit of width a, subdivide the opening into segments and imagine a Huygens wavelet originating from the center of each segment. The wavelets going forward (q=0) all travel the same distance to the screen and interfere constructively to produce the central maximum.
Now consider the wavelets going at an angle such that l = a sin q @a q. The wavelet pair (1, 2) has a path length difference Dr12 = l/2, and therefore will cancel. The same is true of wavelet pairs (3,4), (5,6), etc. Moreover, if the aperture is divided into p subparts, this procedure can be applied to each subpart. This procedure locates all of the dark fringes.
±
1.2 cm of constructive interference from a diffraction grating are
Example: Diffraction of a laser through a slitLight from a heliumneon laser (l = 633 nm) passes through a narrow slit and is seen on a screen 2.0 m behind the slit. The first minimum of the diffraction pattern is observed to be located 1.2 cm from the central maximum.
How wide is the slit?
y of constructive interference from a diffraction grating are 1
y1
y2
y3
0
Width of a SingleSlitDiffraction Patternw
l of constructive interference from a diffraction grating are = 633 nm
a = 0.25 mm
0.5 mm
1 mm
2 mm
Blowup
q (radians)
Diffraction PatternsThe narrower the slit opening a, the broader is the diffraction pattern.
l1
l2
Two single slit diffraction patterns are shown. The distance from the slit to the screen is the same in both cases.
Which of the following could be true?
(a) The slit width a is the same for both; l1>l2.
(b) The slit width a is the same for both; l1<l2.
(c) The wavelength is the same for both; width a1<a2.
(d) The slit width and wavelength is the same for both; p1<p2.
(e) The slit width and wavelength is the same for both; p1>p2.
When light passes through a circular aperture instead of a vertical slit, the diffraction pattern is modified by the 2D geometry. The minima occur at about 1.22l/D instead of l/d. Otherwise the behavior is the same, including the spread of the diffraction pattern with decreasing aperture.
The Rayleigh Resolution Criterion says that the minimum separation to separate two objects is to have the diffraction peak of one at the diffraction minimum of the other, i.e., Dq = 1.22 l/D.
Example: The Hubble Space Telescope has a mirror diameter of 4 m, leading to excellent resolution of closelying objects. For light with wavelength of 500 nm, the angular resolution of the Hubble is Dq = 1.53 x 107 radians.
One way of making a mirror is byplacing a flat glass plate in a vacuumchamber and evaporating a reflectivemetal (e.g., silver or chromium) on itssurface. If this process is haltedbefore a solid reflective coating isachieved, a “partiallysilvered” mirroris created, which reflects and transmits fractions of the incident light. This is useful because the reflected and transmitted beams are coherent, (i.e., have a definite common phase) even when the incident light has a timevarying random phase.
f= 00
*
900
Halfsilvered
Mirror.
f= 900
You will recall that we previously stated that reflection from a surface produces a “phaseflip” of 1800 in the reflected light. This is true for a 1800 reflection. However, when light is reflected at an angle other than 1800, the phase change in the reflected light is the same as the reflection angle. Thus, light reflected at 900 has a 900 change in phase.
A similar 2path interferometer for light can be constructed using a “beamsplitter”, a partially silvered mirror that transmits and reflects half of the incident intensity. This allows a beam of light to be sent along two paths, reflected, and recombined so that it can interfere. This is called a Michaelson Interferometer.
Just as in the case of sound waves, if the interferometer is set for an interference maximum, a new maximum will occur each time one of the arms is moved by l/2. This can be used to measure distances in wavelengths of light.
An experimenter uses a Michaelson interferometer to measure one of the wavelengths of light emitted by electrically excited neon atoms. She slowly moves the mirror M2 and uses a photodetector and a computer to determine that 10,000 new bright central spots have appeared. She then determines with a micrometer that the mirror has moved 3.164 mm.
What is the wavelength of the light?
A Michaelson interferometer using light of wavelength l has been adjusted to produce a bright spot at the center of the interference pattern. Mirror M1 is then moved a distance l toward the beam splitter and mirror M2 is moved a distance l away from the beam splitter.
How many brightdark fringe shifts are observed?
(a) 0; (b) 1; (c) 2; (d) 4; (e) 8.
* of constructive interference from a diffraction grating are
Only
here.
*
Both.
MachZender InterferometerA MachZender interferometer differs from a Michaelson interferometer in having two beam splitters (S1 and S2) and two light detectors (D1 and D2). It divides the initial beam, sends light along two paths, and recombines it in front of the detectors. The light beams receive a 900 shift in phase at each 900 reflection.
If the two paths are equal in length, light goes only to D1 because light at D2 interferes destructively. (Why?) If light is blocked in one of the paths, both D1 and D2 receive light.
A Michaelson interferometer uses light from a heliumneon laser of wavelength lvac = 633 nm. As a 4.0 cm thick glass cell is slowly filled with a gas, 43 brightdarkbright fringe shifts are observed to occur.
What is the index of refraction of the gas at this wavelength?