1 / 33

S. A. Levshakov Dept. Theoretical Astrophyscis A.F. Ioffe Physical-Technical Institute

Spatial variations of the electron-to-proton mass ratio: bounds obtained from high-resolution radio spectra of molecular clouds in the Milky Way. S. A. Levshakov Dept. Theoretical Astrophyscis A.F. Ioffe Physical-Technical Institute St. Petersburg. Contents. Short Introduction

cara-wade
Download Presentation

S. A. Levshakov Dept. Theoretical Astrophyscis A.F. Ioffe Physical-Technical Institute

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spatial variations of the electron-to-proton mass ratio: bounds obtained from high-resolution radio spectra of molecular clouds in the Milky Way S. A. Levshakov Dept. Theoretical Astrophyscis A.F. Ioffe Physical-Technical Institute St. Petersburg

  2. Contents • Short Introduction • Part I. What is known • Part II. What is new • Conclusions

  3. Atomic  Molecular Discrete Spectra allow to probe variability of  = e2/(hc)  =me/mp through relativistic corrections to atomic energy,   (Z)2R Z – atomic number R – Rydberg constant and corrections for the finite nuclear mass,  R less important for atoms important for molecules

  4. fine-structure levels:  = ’-  either spatial or temporal differences     = ’-  = 2   molecular rotational transitions: x = (’)2 - 1    =   dimensionless sensitivity coefficient Q = q/ atomic levels, in general: individual for each atomic transition q-factor [cm-1] ’=  + qx+ …   = 2Q  

  5. Part I. Cosmological Temporal Variations Quasar spectra VLT/UVES Redshift: z = ( - 0)/0 z  2 t 1010 yr

  6. Single ion/ measurements z1 – z2 v FeII 2600 2586 2382 2374 2344 1608  1 = =  2 (Q2 – Q1)(1+z) 2cQ Q  0.04 FeI2967 3021 2484 3441 3720 3861 Q  0.08 Q  0.05 Q  -0.02 Q  0.03 Q  0.06

  7. QSO HE 0001-2340 neutral iron FeI resonance transitions at z=0.45 Doppler width  1 km/s (!) Simple one-component profiles v = -200  200 m/s / = 7  7 ppm Q  0.08 Q  0.03

  8. Q 1101-264 the highest resolution spectrum, FWHM = 3.8 km/s FeII resonance transitions at z=1.84 Current estimate: v = -130  90 m/s / = 4.0  2.8 ppm

  9. brightest QSO HE 0515-4414 FeII resonance transitions at z=1.15 34 FeII pairs {1608,X} X = 2344 2374 2586 Current estimate: 1) updated sensitivity coefficients (Porsev et al.’07) 2) Accounting for correlations between different pairs{1608,X} / = -0.12  1.79 ppm The most stringent limit: |/| < 2 ppm Calibration uncertainty of  50 m/s translates into the error in / of  2 ppm cf. pixel size  2-3 km/s

  10. Conclusions (Part I) No cosmological temporal variations of  at the level of 2 ppm have been found (same for )

  11. Part II. Spatial Variations (search for scalar fields) Chameleon-like scalar field models: dependence of masses and coupling constants on environmental matter density Khoury  Weltman’04 Bax et al.’04 Feldman et al.’06  = () Olive  Pospelov’08  = ()  - ambient matter density lab / ISM  1014 - 1016

  12. Ammonia Method to probe me/mp vibrational, and rotational intervals in molecular spectra Evib : Erot 1/2 :  vib /vib = 0.5 / rot /rot = 1.0 / the inversion vibrational transition in ammonia, NH3, inv = 23.7 GHz inv /inv = 4.5 / Flambaum  Kozlov’07 Qinv / Qvib = 9

  13. N U(x) H H H H N H N H H H H H 10-4 eV H  1.3 cm H x N double-well potential of the inversion vibrational mode of NH3 Quantum mechanical tunneling inv  exp(-S) the action S  -1/2

  14. By comparing the observed inversion frequency of NH3 with a rotational frequency of another molecule arising co-spatially with ammonia, a limit on the spatial variation of / can be obtained : / = 0.3(Vrot – Vinv)/c  0.3 V /c V = Vnoise  V Vnoise = 0 V = V Var(V) = Var(Vnoise)  Var(V )

  15. Hyper-fine splittings in NH3, HC3N  N2H+ 23 GHz 18 GHz 93 GHz

  16. Dense molecular clouds, nH  104 cm-3, Tkin  10K High-mass clumps, M  100Msolar, Infrared Dark Clouds (IRDCs) Low-mass cores, M  10Msolar Protostellar cores containing IR sources Starless cores (prestellar cores) Dynamically stable against grav contraction Unstable nH 105 cm-3 nH 105 cm-3

  17. Molecular differentiation within a low-mass core HCO+ CO CCS CS NH3 N2H+ N2D+ H2D+ H3+ NH3 D3+ D2H+ 105 cm-3 H2 H+ e- 2,000 AU 104 cm-3 5,000 AU 7,000 AU 15,000 AU

  18. Preliminary obtained results (Levshakov, Molaro, Kozlov 2008, astro-ph/0808.0583) Perseus molecular cloud D 260 pc 62 o or 279 pc M  104 Msolar nH  100cm -3

  19. Perseus molecular cores ammonia spectral atlas of 193 molecular cores in the Perseus cloud Rosolowsky et al. 2008 Observations:100-m Green Bank Telescope (GBT) GBT beam size at 23 GHz is FWHM = 31arcsec (0.04 pc) Spectral resolution = 24 m/s (!) Single-pointing, simultaneous observations of NH3 and CCS lines

  20. pure turbulent broadening, (CCS) = (NH3) pure thermal, (CCS) = 0.55(NH3) symmetric profiles CCS vs NH3 Vn=98= 44  13 m/s Vn=34= 39  10 m/s Vn=21= 52  7 m/s / = (5.2  0.7)10-8

  21. Pipe Nebula Rathborne et al. 2008 46 molecular cores in Pipe Nebula Observations:100-m Green Bank Telescope (GBT) GBT beam size at 23 GHz is FWHM = 30arcsec (0.02 pc) Spectral resolution = 23 m/s (!) Single-pointing, simultaneous observations of NH3 and CCS lines

  22. CCS vs NH3 Vn=8 = 69  11 m/s

  23. New results (Astron.Astrophys., astro-ph/0911.3732) Nov 24-28, 2008 Collaboration with NH3 HC3N 32m MEDICINA (Bologna) Italy Alexander Lapinov Christian Henkel Takeshi Sakai Feb 20-22, 2009 Paolo Molaro NH3 HC3N Dieter Reimers 100m EFFELSBERG (Bonn) Germany 41 cold and compact molecular cores in the Taurus giant molecular complex Apr 8-10, 2009 NH3 N2H+ 45m NOBEYAMA (NRAO) Japan 55 molecular pairs in total

  24. Observations: 32-m Medicina Telescope: two digital spectrometersARCOS (ARcetri COrrelation Spectrometer) and MSpec0(high resolution digital spectrometer) Spectral res. = 62 m/s (NH3), 80 m/s (HC3N)ARCOS Spectral res. = 25 m/s (NH3), 32 m/s (HC3N)MSpec0 beam size at 23 GHz, FWHM = 1.6 arcmin position switching mode 100-m Effelsberg Telescope: K-band HEMT (High Electron Mobility Transistor) receiver, backend FFTS (Fast Fourier Transform Spectrometer) Spectral res. = 30 m/s (NH3), 40 m/s (HC3N) beam size at 23 GHz, FWHM = 40 arcsec frequency switching mode 45-m Nobeyama Telescope: HEMT receiver (NH3), and SIS (Superconductor-Insulator- Superconductor) receiver (N2H+) Spectral res. = 49 m/s (NH3), 25 m/s (N2H+) beam size at 23 GHz, FWHM = 73 arcsec position switching mode Independent Doppler tracking of the observed molecular lines

  25. Effelsberg 100-m

  26. Nobeyama 45-m

  27. co-spatially distributed total n=55 Black: 1<1.2 Red: 1.2<1.7 b(NH3)  = b(HC3N)  = 1.7 for pure thermal broadening

  28. Results total sample, n=55 mean V = 14.1  4.0 m/s scale = 29.6 m/s (standard deviation) median V = 17 m/s mean V = 21.5  2.8 m/s co-spatially distributed, n=23 (red  black points) scale = 13.4 m/s median V = 22 m/s mean V = 21.2  1.8 m/s thermally dominated, n=7 (red points) scale = 3.4 m/s median V = 22 m/s effelsberg, n=12 mean V = 23.2  3.8 m/s scale = 13.3 m/s NH3 HC3N median V = 22 m/s nobeyama, n=9 mean V = 22.9  4.2 m/s scale = 12.7 m/s NH3 N2H+ median V = 22 m/s

  29. Poor accuracy in lab frequencies -main source of uncertainties sys = 0.6 m/s NH3 sys = 2.8 m/s HC3N N2H+ sys = 14 m/s V = 23.2  3.8stat  2.8sys m/s Effelsberg: / = (2.2  0.4stat  0.3sys)10-8

  30. GBT vs Effelsberg CCS  NH3 HC3N NH3 V  52  7m/s V  23.2  3.8 m/s 22344.033(1) MHzYamamoto et al.’90 – radioastronomical estimate 22344.029(4) MHz Lovas et al.’92 - laboratory 22344.0308(10) MHzCDMS’05 - catalogue V  22  7m/s v  13.4 m/s 1 kHz at 22.3 GHz V  6  7m/s

  31. new precise lab freqencies badly needed ! lab  1 m/s

  32. Constraint on -variation fine-structure transition of carbon [CI] 609 m low-lying rotational lines of 13CO J=1-0 (2.7 mm), J=2-1 (1.4 mm) F = 2/ F/F = 2/ - / = v/c v = vrot - vfs TMC-1 Schilke et al.’95 observations of cold molecular clouds FWHM = 200-400 m/s L 183 Stark et al.’96 Ori A,B Ikeda et al.’02 FWHM = 100 m/s mean V = 0  60 m/s sample size n=13 scale = 215 m/s (standard deviation) median V = 0 m/s |/| < 0.15 ppm |F/F| < 0.3 ppm

  33. Conclusions (Part II) reproduced at different facilities • velocity offset V = 23  4stat  3sys m/s • no known systematic at the level of 20 m/s verification – other molecules new targets / = (2.2  0.4stat  0.3sys)10-8 • conservative upper limits at z=0 : |/|  310-8 |/| < 1.510-7  expected /  10-8 • at high-z, ISM(z=0)  ISM (z>0) if no temporal dependence of (t) is present

More Related