fisika komputasi n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
FISIKA KOMPUTASI PowerPoint Presentation
Download Presentation
FISIKA KOMPUTASI

Loading in 2 Seconds...

play fullscreen
1 / 36

FISIKA KOMPUTASI - PowerPoint PPT Presentation


  • 187 Views
  • Uploaded on

FISIKA KOMPUTASI . PEND. FISIKA UIN ALAUDDIN .

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

FISIKA KOMPUTASI


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. FISIKA KOMPUTASI PEND. FISIKA UIN ALAUDDIN

    2. Komputerdiciptakanuntukmembantumanusiadalammelakukankomputasi yang rumit agar hasilnyadapatdiperolehdalam tempo singkatdenganketepatan yang bisaditerima. Berbagaipersoalanfisikamemerlukankomputasi yang cukuprumitapabiladikerjakansecaraanalitikdan manual.

    3. Aproksimasipenyelesaiankemudiandiperkenalkanuntukmenyederhanakanpenyelesaikaneksak. Metode numeric diciptakanuntukmelakukanaproksimasiinidalampencariansolusipersoalanrumit.

    4. Fisika Komputasi merupakan suatu gabungan antara Fisika,Komputer Sains dan Matematika Terapan untuk memberikan solusi pada “Kejadian dan masalah yang komplek” baik dengan menggunakan simulasi juga penggunaan algoritma yang tepat.

    5. Pemahaman fisika pada teori, experimen, dan komputasi haruslah sebanding, agar dihasilkan solusi numerik dan visualizasi /pemodelan yang tepat untuk memahami masalah Fisika. Untuk melakukan perkerjaan seperti evaluasi integral,penyelesaian persamaan differensial, vector, matriks,penyelesaian persamaan simultans, mem-plot suatu fungsi/data, membuat pengembangan suatu seri fungsi, menemukan akar persamaan dan bekerja dengan bilangan komplek yang menjadi tujuan penerapan fisika komputasi.

    6. PendahuluanI.1. PengantarPemrogramanMatlab • MatlabmerupakansingkatandariMATrixLABoratory, suatuperangkatlunakmatematis yang menggunakan vector danmatrikssebagaielemen data utama. MATLAB diciptakandiUniversitas Mexico Dan Stanford University ditahun 70-an, yang kemudiantahundemitahundisempurnakanhinggasaatini. • Matlabmerupakanbahasapemrogramandengankemampuantinggidalambidangkomputasi. • Mengapakitamemilihbahasapemrogramanmatlab?

    7. Saatinibahasapemrogramantidakhannyadituntutmemilikikemampuandarisegikomputasi, tetapijugakemampuanvisualisasi yang baik. Matlabmemilikikemampuanmengintegrasikankomputasi, visualisasi, danpemrograman. Dalammemvisualisasikansebuahobyek, matlabmemilikikemampuanmerotasiobyektanpamengubahprogramnya.

    8. I.2. BagianPentingMatlab • Beberapabagianpentingdalammatlabadalah: • Command Window (JendelaPerintah) Padajendelaperintah, semuaperintahdituliskandandieksekusi. Kita dapatmenuliskanperintah yang diperlukansepertiperhitunganbiasa, memanggilfungsi (help), demo program, dsb. Setiappenulisanperintahselaludiawalidengan prompt “>>” Misalnyakitaakanmencarihasildariakardari 254 , makadalamjendelakitamenuliskan:

    9. >>sqrt(254) ans = 15.9374

    10. Workspace (JendelaKerja) • Jendelakerjamerupakansebuahjendelamatlab yang berisiinformasipemakaian variable didalammemorimatlab. Misalnya, kitaakanmencariluaspersegipanjang, makapadajendelaperintahkitadapatmengetikkan:

    11. > >panjang=5 panjang = 5 >> lebar=2 lebar = 2 >> luas=panjang*lebar luas = 10

    12. I.3. ElemenDasarMatlaba. OperasiArimetika a. Penjumlahan : + misalnyaa+b b. Pengurangan : - misalnya a-b c. Perkalian : * d. Pembagian : / e. Perpangkatan : ^

    13. contoh: >>a=3; >>b=5; >>(a+b)/2*5^2

    14. b. Variabel Variabelpadamatlabharusdimulaidenganhuruf, bisadiikutidenganhuruf lain atauangka, maksimum 31 karakter. Nama variable denganhurufbesardianggapberbedadenganhurufkecil.

    15. c. Konstanta/ Tetapan Beberapatetapan yang berlakupadamatlabadalahsebagaiberikut: • pi nilai π = 3.14152…. • epsnilai epsilon, bilangan natural e = • infnilaitakberhingga ∞ • iatauj nilaiimajiner • realminbilanganriilpositifterkecil • realmaxbilanganriilpositifterbesar

    16. d. Tanda Baca • % digunakanuntukmengawalikomentar (comment) • ‘ digunakanuntukmemisahkanduapernyataandalamsebaris • … digunakanuntukmelanjutkanstatemenkebarisberikutnya

    17. Contoh: >> %iniadalahcontohpemakaiantandabaca >>eraser=4, pads=6; tape=2 eraser = 4 tape = 2 >>cost=eraser*500 + pads*5000 + ......... tape*4500 cost = 41000

    18. e. BilanganKompleks Bilangankompleksterdiriatasbilanganriildan imaginer, dimanabagianbagian imaginer diberi symbol iatauj. Misalnya

    19. >> c1=1-2i  c1 = 1.0000 - 2.0000i  >> c2=3*(2-sqrt(-1)*3)  c2 = 6.0000 - 9.0000i • >> c3=sqrt(-2) c3 = 0 + 1.4142i

    20. >> c4=(c1+c2)/c3 c4 = -7.7782 - 4.9497i

    21. f. Fungsi-fungsimatematis Beberapafungsimatematisdisediakanolehmatlabuntukmemudahkanparapenggunadalammelakukankomputasi, antara lain sebagaiberikut:

    22. abs(x) mengambilnilai absolute dari variable x • acos(x) menghitungarcuscosinus x • acosh(x) menghitungnilaiarcuscosinushiperbolikusdari x • angle(x) menghitungbesarnyasudut yang dibentukolehbilangankompleks x • asin(x) menghitungnilaiarcus sinus x • asinh(x) menghitungnilaiarcus sinus hiperbolikusdari x

    23. atan(x) menghitungnilaiarcustangens x • atanh(x) menghitungnilaiarcustangenshiperbolikusdari x • ceil(x) membulatkankeatasdaribilanganpecahan • cos(x) menghitungnilaicosinus x • cosh(x) menghitungnilaicosinushiperbolikusdari x • exp(x) menghitungnilai ex

    24. fix(x) mengambilnilaibulatdarisuatupecahan • floor(x) pembulatannilaipecahankebawah • gcd(x,y) menghitung PPT (Persekutuan PembagiTerbesar) darix,y • imag(x)mengambilbagian imaginer daribilangankompleks x • lcm(x,y)menghitungpersekutuanpengaliterkecildari x dan y • log(x)menghitunglogaritma natural (ln) dari x • log10(x)menghitunglogaritmadari x • real(x)mengambilbilanganriildaribilangankompleks x

    25. rem(x,y)meghitungsisapembagiandari x/y • round(x)pembulatanpecahankebilanganterdekat, round(4.3)=4 • sinh(x)menghitungnilai sinus hiperbolikusdari x • sqrt(x)menghitungakardari x • tan(x)menghitungnilaitanngens x

    26. contoh: >> a=3,b=4; a = 3 >> y=sqrt(a^2+b^2) y = 5

    27. 2. VEKTOR DAN MATRIKS Padahakikatnyamatlabhanyamengenalsatumacamstruktur data, yaitumatriks. Skalaradalahmatriks 1x1, vector barisadalahmatriks 1xN, dan vector kolomadalahmatriks Nx1, danmatriksadalahlarikNxM, dengan N adalahbarisdan M adalahkolom.

    28. >> a=[1 2 3 4] a = 1 2 3 4 >> b=[1; 2; 3; 4] b = 1 2 3 4

    29. >> b b = 1 2 3 4

    30. >> d=a+i*a d = Columns 1 through 3 1.0000 + 1.0000i 2.0000 + 2.0000i 3.0000 + 3.0000i Column 4 4.0000 + 4.0000i

    31. >> M=[4 2 1;3 2 1;5 7 6] M = 4 2 1 3 2 1 5 7 6

    32. >> E=[1 pi;0 -1;3 sqrt(-1)] E = 1.0000 3.1416 0 -1.0000 3.0000 0 + 1.0000i

    33. Beberapafungsiuntukmemanipulasimatriksdisediakanolehmatlabsebagaiberikut:Beberapafungsiuntukmemanipulasimatriksdisediakanolehmatlabsebagaiberikut: • det(M) menghitungdeterminandarimatriks M • eig(M) menghitungnilaieigendarimatriks M • inv(M) menghitung inverse matriks M • logm(M) menghitunglogaritmamatriks M

    34. sqrtm(M) mencariakardarimatriks M • trace(M) menjumlahkanelemen diagonal darimatriks M • eye(M) membentukmatriks diagonal identitas 3 x 3 • magic(n) membentukmatriksajaib n x n • ones(3) matriks 3 denganelemensemua 1 • zeros(3) matriks 3 denganelemensemua 0 • rand(3) matriks 3 denganelemenbilanganacakantara 0-1

    35. OperasiMatriks • OperasiPenjumlahan • OperasiPerkalianduaMatriks • PerkalianMatriksdanSkalar • OperasiPerpangkatanMatriks • DeterminanMatriks • InversMatriks • Transpose