computing with quanta for mathematics students n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Computing with Quanta for mathematics students PowerPoint Presentation
Download Presentation
Computing with Quanta for mathematics students

Loading in 2 Seconds...

play fullscreen
1 / 73

Computing with Quanta for mathematics students - PowerPoint PPT Presentation


  • 80 Views
  • Uploaded on

Financial supports from Kinki Univ., MEXT and JSPS. Computing with Quanta for mathematics students . Mikio Nakahara Department of Physics & Research Centre for Quantum Computing Kinki University, Japan. Table of Contents. 1. Introduction: Computing with Physics

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Computing with Quanta for mathematics students' - calla


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
computing with quanta for mathematics students

Financial supports from Kinki Univ.,

MEXT and JSPS

Computing with Quantafor mathematics students

Mikio Nakahara

Department of Physics &

Research Centre for Quantum Computing

Kinki University, Japan

table of contents
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

i introduction computing with physics
I. Introduction: Computing with Physics

Colloquium @ William & Mary

more complicated example
More complicated Example

Colloquium @ William & Mary

quantum computing information processing
Quantum Computing/Information Processing
  • Quantum computation & information processing make use of quantum systems to store and process information.
  • Exponentially fast computation, totally safe cryptosystem, teleporting a quantum state are possible by making use of states & operations which do not exist in the classical world.

Colloquium @ William & Mary

table of contents1
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

qubit
Qubit |ψ〉

Colloquium @ William & Mary

bloch sphere s 3 s 2
Bloch Sphere: S3→ S2

π

Colloquium @ William & Mary

2 2 two qubit system
2.2 Two-Qubit System

Colloquium @ William & Mary

tensor product rule
Tensor Product Rule

Colloquium @ William & Mary

entangled state vector
Entangled state (vector)

Colloquium @ William & Mary

2 3 multi qubit systems
2.3 Multi-qubit systems

Colloquium @ William & Mary

2 4 algorithm unitary matrix
2.4 Algorithm = Unitary Matrix

Colloquium @ William & Mary

unitary matrices acting on n qubits
Unitary Matrices acting on n qubits

Colloquium @ William & Mary

table of contents2
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

3 brief introduction to quantum theory
3. Brief Introduction to Quantum Theory

Colloquium @ William & Mary

axioms of quantum physics
Axioms of Quantum Physics

Colloquium @ William & Mary

example of a measurement
Example of a measurement

Colloquium @ William & Mary

axioms of quantum physics cont d
Axioms of Quantum Physics (cont’d)

Colloquium @ William & Mary

qubits matrices in quantum physics
Qubits & Matrices in Quantum Physics

Colloquium @ William & Mary

actual qubits
Actual Qubits

Trapped Ions

Neutral Atoms

Molecules (NMR)

Superconductors

Colloquium @ William & Mary

table of contents3
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

4 2 quantum gates
4.2 Quantum Gates

Colloquium @ William & Mary

hadamard transform
Hadamard transform

Colloquium @ William & Mary

4 3 universal quantum gates
4.3 Universal Quantum Gates

Colloquium @ William & Mary

4 4 quantum parallelism
4.4 Quantum Parallelism

Colloquium @ William & Mary

table of contents4
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

5 quantum teleportation
5. Quantum Teleportation

Unknown Q State

Bob

Initial State

Alice

Colloquium @ William & Mary

q teleportation circuit
Q Teleportation Circuit

Colloquium @ William & Mary

slide34

As a result of encoding, qubits 1 and 2 are entangled.

When Alice measures her qubits 1 and 2, she will obtain one of 00, 01, 10, 11. At the same time, Bob’s qubit is fixed to be one of the four states. Alice tells Bob what readout she has got.

Upon receiving Alice’s readout, Bob will know how his qubit is different from the original state (error type). Then he applies correcting transformation to his qubit to reproduce the original state.

Note that neither Alice nor Bob knows the initial state

Example: 11

Colloquium @ William & Mary

table of contents5
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

table of contents6
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Quantum Teleportation
  • 6. Simple Quantum Algorithm
  • 7. Shor’s Factorization Algorithm

Colloquium @ William & Mary

difficulty of prime number facotrization
Difficulty of Prime Number Facotrization
  • Factorization of N=89020836818747907956831989272091600303613264603794247032637647625631554961638351 is difficult.
  • It is easy, in principle, to show the product of p=9281013205404131518475902447276973338969 and q =9591715349237194999547 050068718930514279 is N.
  • This fact is used in RSA (Rivest-Shamir-Adleman) cryptosystem.

Colloquium @ William & Mary

shor s factorization algorithm
Shor’s Factorization algorithm

Colloquium @ William & Mary

realization using nmr 15 3 5 l m k vandersypen et al nature 2001
Realization using NMR (15=3×5)L. M. K. Vandersypen et al (Nature 2001)

Colloquium @ William & Mary

nmr molecule and pulse sequence 300 pulses 300 gates
NMR molecule and pulse sequence ( (~300 pulses~ 300 gates)

perfluorobutadienyl iron complex with the two 13C-labelled

inner carbons

Colloquium @ William & Mary

foolproof realization is discouraging vartiainen niskanen nakahara salomaa 2004
Foolproof realization is discouraging …? Vartiainen, Niskanen, Nakahara, Salomaa (2004)

Foolproof implementation of factorization 21=3 X 7 with Shor’s algorithm requires at least 22 qubits and approx. 82,000 steps!

Colloquium @ William & Mary

summary
Summary
  • Quantum information is an emerging discipline in which information is stored and processed in a quantum-mechanical system.
  • Quantum information and computation are interesting field to study. (Job opportunities at industry/academia/military).
  • It is a new branch of science and technology covering physics, mathematics, information science, chemistry and more.
  • Thank you very much for your attention!

Colloquium @ William & Mary

slide48
4. 量子暗号鍵配布

三省堂サイエンスカフェ 2009年6月

slide49
 量子暗号鍵配布 1

三省堂サイエンスカフェ 2009年6月

slide50
量子暗号鍵配布 2

三省堂サイエンスカフェ 2009年6月

slide51
量子暗号鍵配布 3

三省堂サイエンスカフェ 2009年6月

slide52
量子暗号鍵配布 4

イブがいなければ、4Nの量子ビットのうち、平均して2N個は正しく伝わる。

三省堂サイエンスカフェ 2009年6月

slide53
イブの攻撃

2N個の正しく送受された量子ビットのうち、その半分のN個を比べる。もしイブが盗聴すると、その中のいくつか(25 %)は間違って送受され、イブの存在が明らかになる。

三省堂サイエンスカフェ 2009年6月

table of contents7
Table of Contents
  • 1. Introduction: Computing with Physics
  • 2. Computing with Vectors and Matrices
  • 3. Brief Introduction to Quantum Theory
  • 4. Quantum Gates, Quantum Circuits and

Quantum Computer

  • 5. Simple Quantum Algorithm
  • 6. Shor’s Factorization Algorithm
  • 7. Time-Optimal Implementation of SU(4) Gate

Colloquium @ William & Mary

7 time optimal implementation of su 4 gate
7. Time-Optimal Implementation of SU(4) Gate
  • Barenco et al’s theorem does not claim any optimality of gate implementation.
  • Quantum computing must be done as quick as possible to avoid decoherence (decay of a quantum state due to interaction with the environment). Shortest execution time is required.

Colloquium @ William & Mary

7 1 computational path in u 2 n
7.1 Computational path in U(2n)

Colloquium @ William & Mary

map of kyoto
Map of Kyoto

Colloquium @ William & Mary

7 2 optimization of 2 qubit gates
7.2 Optimization of 2-qubit gates

Colloquium @ William & Mary

nmr hamiltonian
NMR Hamiltonian

Colloquium @ William & Mary

time optimal path in su 4
Time-Optimal Path in SU(4)

Colloquium @ William & Mary

cartan decomposition of su 4
Cartan Decomposition of SU(4)

Colloquium @ William & Mary

how to find the cartan decomposition
How to find the Cartan Decomposition

Colloquium @ William & Mary

example cnot gate
Example: CNOT gate

Colloquium @ William & Mary

6 warp drive quant ph 0411153
6. Warp-Drive を用いた量子アルゴリズムの加速 (quant-ph/0411153)

奈良女子大学セミナー 28 Jan. 2005

slide69
7. 実験結果
  • Carbon-13 で置換したクロロフォルム

qubit 1 = 13C, qubit 2 = H

  初期状態

出力状態

Qubit 2

Qubit 1

奈良女子大学セミナー 28 Jan. 2005

slide70

Field Gradient 法によるNMRスペクトル

10パルス  4パルス,1/J  1/2Jによるスペクトルの改善

奈良女子大学セミナー 28 Jan. 2005

8 summary i cartan
8. Summary I: Cartan分解

奈良女子大学セミナー 28 Jan. 2005

slide72

Summary II: Warp-Drive

奈良女子大学セミナー 28 Jan. 2005

power of entanglement
Power of Entanglement

Colloquium @ William & Mary