Loading in 5 sec....

Software Engineering COMP 201PowerPoint Presentation

Software Engineering COMP 201

- 85 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about 'Software Engineering COMP 201' - calida

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

### Software EngineeringCOMP 201

Lecturer: Sebastian Coope

Ashton Building, Room G.18

E-mail: coopes@liverpool.ac.uk

COMP 201 web-page:

http://www.csc.liv.ac.uk/~coopes/comp201

Lecture 12 – Formal Specifications

COMP201 - Software Engineering

Recap on Formal Specification

Objectives:

- To explain why formal specification techniques help discover problems in system requirements
- To describe the use of:
- algebraic techniques (for interface specification) and
- model-based techniques (for behavioural specification)

- To introduce Abstract State Machine Model (ASML)

COMP201 - Software Engineering

Behavioural Specification

- Algebraic specification can be cumbersome when the object operations are not independent of the object state
- Model-based specificationexposes the system state and defines the operations in terms of changes to that state

COMP201 - Software Engineering

OSI Reference Model

Model-based specification

Application

Algebraic specification

COMP201 - Software Engineering

Abstract State Machine Language (AsmL)

- AsmL is a language for modelling the structure and behaviour of digital systems. We will see a basic introduction to ASML and how some concepts can be encoded formally.
- (We will not go into too many details but just see the overall format ASML uses).

- AsmLcan be used to faithfully capture the abstract structure and step-wise behaviour of any discrete systems, including very complex ones such as:
- Integrated circuits
- Software components
- Devices that combine both hardware and software

COMP201 - Software Engineering

Abstract State Machine Language

- An AsmL modelis said to be abstract because it encodes only those aspects of the system’s structure that affect the behaviour being modelled
The goalis to use the minimum amount of detail that accurately reproduces (or predicts) the behaviour of the system that we wish to model

- This means we may obtain an overview of the system without becoming bogged down in irrelevant implementation details and concentrate on important concerns such as concurrency.

COMP201 - Software Engineering

Abstract State Machine Language

- Abstractionhelps us reduce complex problems into manageable units and prevents us from getting lost in a sea of details
AsmL provides a variety of features that allows us to describe the relevant state of a system in a very economical and high-level way

COMP201 - Software Engineering

Abstract State Machines and Turing Machines

- An abstract state machineis a particular kind of mathematical machine, like a Turing machine (TM)
- But unlike a TM, abstract state machines may be defined by a very high level of abstraction
- An easy way to understand ASMs is to see them as defining a succession of states that may follow an initial state

COMP201 - Software Engineering

Sets Described Algorithmically

Sometimes, we may wish to describe a set algorithmically. We shall now see how this may be done is ASML.

- Problem:
- Suppose we have a set that includes the integers from 1 to 20 and we want to find those numbers that, when doubled, still belong to the set.

- Solution:

Informal

A = {1..20}

C = {i | iin A where 2*iin A}

Main()

step

WriteLine(C)

Formal (ASML)

Sequences

- A Sequenceis a collection of elements of the same type, just as a set is but they differ from sets in two ways:
- A sequence is ordered while a set is not.
- A sequence can contain duplicate elements while a set does not.

- Elements of sequences are contained within square brackets: [ ]: e.g. [1,2,3,4], [4,3,2,1], [a,e,i,o,u], [a,a,e,i,o,u]

Sequences

X={1,2,3,4}

Y={1,1,2,3,4}

Z=[1,1,2,3,4]

Main()

stepWriteLine(“X=” +X)

stepWriteLine (“Y=” +Y)

stepWriteLine (“Y=” +Y)

The result is:

X = {1,2,3,4}

Y = {1,2,3,4}

Z = [1,1,2,3,4]

SORT Algorithm

We shall now consider a simple specification of a one-swap-at-a-time sorting algorithm and how it can be written in ASML.

COMP201 - Software Engineering

ASML Example

var A asSeqof Integer

swap()

chooseiin {0..length(A)-1}, j in {0..length(A)-1} wherei< j and A(i) > A(j)

A(j) := A(i)

A(i) := A(j)

sort()

stepuntilfixpoint

swap()

Main()

step A := [-4,6,9,0, 2,-12,7,3,5,6]

stepWriteLine(“Sequence A : ")

step sort()

stepWriteLine("after sorting: " + A)

A is a sequence (i.e. Ordered set) of integers

Method declaration

Continue to do next operation ( swap() ) until “fixpoint”, i.e. no more changes occur.

COMP201 - Software Engineering

ASML Example

var A asSeqof Integer

swap()

chooseiin {0..length(A)-1}, j in {0..length(A)-1} wherei< j and A(i) > A(j)

A(j) := A(i)

A(i) := A(j)

sort()

stepuntilfixpoint

swap()

Main()

step A := [-4,6,9,0, 2,-12,7,3,5,6]

stepWriteLine(“Sequence A : ")

step sort()

stepWriteLine("after sorting: " + A)

Choose indices i,j such that i < j and A(i) < A(j) (thus the array elements i,j are not currently ordered).

Swap elements A(i) and A(j)

Continue to call swap() until there are no more updates possible (thus the sequence is ordered)

COMP201 - Software Engineering

Hoare’s Quicksort

- Quicksort was discovered by Tony Hoare (published in 1962).
- Here is the outline
- Pick one item from the array--call it the pivot
- Partition the items in the array around the pivot so all elements to the left are smaller than the pivot and all elements to the right are greater than the pivot
- Use recursion to sort the two partitions

COMP201 - Software Engineering

Hoare's Quicksort using Sequences and Recursion

qsort(s asSeqof Integer) asSeqof Integer

if s = [] thenreturn []

else pivot = Head(s) rest = Tail(s)

returnqsort([y | y inrest where y < pivot]) + [pivot] + qsort([y | y inrest where y ≥ pivot])

A sample main program sorts the Sequence [7, 8, 2, 42] and prints the result:

Main()

WriteLine(qsort([7, 8, 2, 42]))

COMP201 - Software Engineering

Shortest Paths Algorithm

- Specification of Shortest Paths from a given node s.
- The nodes of the graph are given as a set N.
- The distances between adjacent nodes are given by a map D, where D(n,m)=infinity denotes that the two nodes are not adjacent.

COMP201 - Software Engineering

What is the Shortest Distance from SeaTac to Redmond?

11

SeaTac

Seattle

11

5

5

9

13

9

5

Bellevue

Redmond

5

COMP201 - Software Engineering

Declaration

N = {SeaTac, Seattle, Bellevue, Redmond}

D = {(SeaTac, SeaTac) -> 0,

(SeaTac, Seattle) -> 11,

(SeaTac, Bellevue) -> 13,

(SeaTac, Redmond) -> infinity, // to be calculated

(Seattle, SeaTac) -> 11,

(Seattle, Seattle) -> 0,

(Seattle, Bellevue) -> 5,

(Seattle, Redmond) -> 9,

(Bellevue, SeaTac) -> 13,

(Bellevue, Seattle) -> 5,

(Bellevue, Bellevue) -> 0,

(Bellevue, Redmond) -> 5,

(Redmond, SeaTac) -> infinity, // to be calculated

(Redmond, Seattle) -> 9,

(Redmond, Bellevue) -> 5,

(Redmond, Redmond) -> 0}

structure Node

s as String

infinity = 9999

SeaTac = Node("SeaTac")

Seattle = Node("Seattle“)

Bellevue = Node("Bellevue")

Redmond = Node("Redmond")

COMP201 - Software Engineering

shortest( s as Node, N as Set of Node, D as Map of (Node, Node) to Integer) as Map of Node to Integer

var S = {s -> 0} merge {n -> infinity | n in N where n ne s}

step until fixpoint

forall n in N where n ne s

S(n) := min({S(m) + D(m,n) | m in N})

step return S

min(s as Set of Integer) as Integer

require s ne {}

return (any x | x in s where forall y in s holds x ltey)

COMP201 - Software Engineering

Main()

// … Graph specification …

shortestPathsFromSeaTac = shortest(SeaTac, N, D)

WriteLine("The shortest distance from SeaTac to Redmond is” + shortestPathsFromSeaTac(Redmond) + " miles.")

The shortest distance from SeaTac to Redmond is 18 miles.

COMP201 - Software Engineering

Lecture Key Points

- Formal system specification complements informal specification techniques.
- Formal specifications are precise and unambiguous. They remove areas of doubt in a specification.
- Formal specification forces an analysis of the system requirements at an early stage. Correcting errors at this stage is cheaper than modifying a delivered system.
- Formal specification techniques are most applicable in the development of critical systems and standards.

COMP201 - Software Engineering

Lecture Key Points

- Algebraic techniques are suited to interface specification where the interface is defined as a set of object classes.
- Model-based techniques model the system using sets and functions. This simplifies some types of behavioural specification.
- Operations are defined in a model-based spec. by defining pre and post conditions on the system state.
- AsmL is a language for modelling the structure and behaviour of digital systems.

COMP201 - Software Engineering

Download Presentation

Connecting to Server..