1 / 62

Distribuzioni

. Distribuzioni di probabilit di interesse. Distribuzione binomialeDistribuzione normaleDistribuzione del t di StudentDistribuzione di F di FisherDistribuzione del ?2Distribuzione di PoissonDistribuzione del QDistribuzione binomiale negativaDistrib Gamma, beta, Cauchy, Gumbel, Weibull, Log

byron
Download Presentation

Distribuzioni

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Distribuzioni

    2. Distribuzioni di probabilità di interesse

    4. Supponiamo di fare un esperimento con appena 2 risultati possibili. Gli esempi comuni sono: passare/fallire un esame vincere/perdere al gioco Osservare testa/croce lanciando una moneta includere una persona in una lista [fumatori | non fumatori] vivere/morire a causa di un ricovero in ospedale Si consideri una variabile casuale dicotomica. La variabile deve assumere uno di due possibili valori; questi risultati mutuamente esclusivi possono essere, ad esempio: [maschio o femmina], [salute o malattia]. Una variabile di questo tipo è nota come variabile casuale di Bernoulli.

    5. Le prove di Bernoulli e la distribuzione binomiale Un esperimento che consiste di singolo lancio di una moneta, o una singola classificazione è denominato una prova di Bernoulli. Se l'esperimento (o prova) è ripetuto piò volte e le ripetizioni sono indipendenti tra loro, allora la distribuzione di probabilità della variabile casuale X= # dei successi in n prove indipendenti di Bernoulli è denominata “distribuzione binomiale”.

    6. Una distribuzione è binomiale quando: Il risultato di ogni prova è uno di 2 risultati, riferito spesso come un successo|fallimento. La probabilità p di successo è la stessa in ogni prova. Le prove sono indipendenti: il risultato di una prova non ha influenza sul risultato di un'altra prova.

    8. Coefficiente binomiale

    11. Studiamo la distribuzione binomiale La distribuzione binomiale è semplicemente una distribuzione discreta di probabilità. Possiamo studiare la distribuzione scrivendo i risultati possibili nello spazio dei campioni e determinando la loro probabilità. Cominciamo con un esempio semplice nel quale una moneta è gettata due volte. Poi studiamo la possibilità di gettare la moneta n=3 volte. Ciò induce a provare a generalizzare la probabilità di quale risultato avremmo se la moneta fosse lanciata n=4 volte, o persino di più volte.

    55. Covarianza

More Related