1 / 23

Sviluppo di algoritmi d’inversione

Sviluppo di algoritmi d’inversione. Empirici Neural network Modelli numerici di trasferimento radiativo. Radiative transfer modeling. Model type/purpose Spectral range/integration Angular integration Polarization Physical Processes/level of parametrization Geometry Input Output

burian
Download Presentation

Sviluppo di algoritmi d’inversione

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sviluppo di algoritmi d’inversione Empirici Neural network Modelli numerici di trasferimento radiativo

  2. Radiative transfer modeling Model type/purpose Spectral range/integration Angular integration Polarization Physical Processes/level of parametrization Geometry Input Output User friendly Examples

  3. Proprieta’ fisiche delle singole molecole e Aerosols (composizione) (p,T) Proprieta’ ottiche delle singole molecole e Aerosols (λ,Ω) Proprieta’ ottiche del volume(λ,Ω) Proprieta’ ottiche della superficie/boundaries(λ,Ω) Equazione del trasporto radiativo (λ,Ω) Soluzione (∫ ∫ …dλdΩ)

  4. Proprieta’ fisiche delle singole molecole e Aerosols (composizione) Processi radiativi d’interazione Proprieta’ ottiche delle singole molecole e Aerosols (λ,Ω) Calcolo delle proprieta’ ottiche di volume: Spessore ottico, albedo di singolo scattering, proprieta’ angolari dello scattering (per es: g o matrice di diffusione) o T,R,A Proprieta’ ottiche del volume(λ,Ω) Risoluzione numerica dell’eq. Del trasporto radiativo Equazione del trasporto radiativo (λ,Ω) Risoluzione numerica di eventuali integrazioni angolari e spettrali Soluzione (∫ ∫ …dλdΩ)

  5. La radiazione scatterata da un generico volume dipende dalla intensita’ e distribuzione angolare della radiazione incidente sul volume che pero’ dipende, atraverso lo scattering dei volumi vicini a sua volta dalla radiazione scatterata (p,T)

  6. Ordini di scattering successivi Montecarlo Doubling or Adding Invariant imbedding Funzioni X e Y Discrete – Ordinate Armoniche sferiche Sviluppo in eigenfuction Pseudo-assorbimento Scattering MULTIPLO: METODI NUMERICI

  7. Doubling or adding method

  8. Si definisce per la trasmissione diffusa e per la riflessione: Un prodotto R1R2 implica:

  9. INSTRUMENT CHARACTERISTICS : NOISE, FILTER RESPONSES, MULLER SIMULATED • GAS ABSORPTION FROM MAJOR AND MINOR GASES • MULTIPLE SCATTERING • POSSIBILITY TO INTRODUCE USER DEFINED DETAILED INPUT • SPECTRAL RESOLUTION AND RANGE ADEGUATE INSTRUMENT SIMULATOR ALTITUDE INCLINATION PERIOD EQ. PASS. TIME ORBIT MODEL EARTH SUBSATELLITE POSITION SCANNING MODEL SCANNING CHARACTERISTICS OBSERVATION GEOMETRY (S, V, ) SURFACE (  (S, V, , ) ,zo) RADIATIVE TRANSFER EQUATION SOLVER SIMULATEDMEASURED INSTRUMENT MODEL INPUT UPWELLING CLEAR SKY ATMOSPHERE THERMODYNAMIC PROFILE (T(z),p(z), gas(z)) RADIANCES RADIANCES CLOUDS (SSOP( ,z)*,( ,z)) AEROSOLS (SSOP( ,z)*,( ,z)) (*) SSOP: Single Scattering Optical Properties SSA Legendre Polynomial coefficients MOLECULAR SCATTERING PROFILE (SSOP( ,z),( ,z)) GAS EXTINCTION PROFILE (( ,z))

  10. HITRAN 2000 TAPE 1 RANGE LNFL TAPE 3 GAS MOLECULES CLEAR SKY ATMOSPHERE THERMODYNAMIC PROFILE (T(z),p(z), gas(z)) LBL GAS EXTINCTION PROFILE (( ,z)) GEOGRAPHYCAL POSITION (LAT,LON) TOPOGRAPHY MODEL ? SURFACE COMPOSITION z(LAT,LON)) REFRACTIVE INDEX DB m(λ,surface) BRDF MODEL SURFACE (  (S, V, , ) ,zo)

  11. CLEAR SKY ATMOSPHERE THERMODYNAMIC PROFILE (T(z),p(z), gas(z)) μPhysical model COMPOSITION PROFILE (SD(z,aerosol)) SD PROFILE (SD(z,aerosol)) COMPOSITION ↓ REFRACTIVE INDEX SSOPM MIEV0 REFRACTIVE INDEX DB m(λ,aerosol) REFRACTIVE INDEX m(λ,z,aerosol) AEROSOLS (SSOP( ,z)*,( ,z)) MIXTURE TYPE Ext,Int SHAPE S(SD,z,aerosol) CLOUDS (SSOP( ,z)*,( ,z))

  12. SD PROFILE (SD(z,water)) SSOPM MIEV0 REFRACTIVE INDEX m(λ,z,water) WATER CLOUDS (SSOP( ,z)*,( ,z)) δ-M SHAPE S(SD,z,water)

  13. Comments on RTM • Completeness of the represented processes. (e.g. type of absorption band model, numerical solution of the multiple scattering) • Assumptions (e.g. Lambertian surface representation) • Internal database (e.g. angular representation of single scattering properties)

  14. Alcuni siti d’interesse www.colorado.edu/physics/phet/simulations/blackbody/blackbody.swf omlc.ogi.edu/calc/mie_calc.htlm www.crseo.ucsb.edu/esrg/sbdart/ http://irina.eas.gatech.edu/rad-codes.htm • Sito che permette di fare simulazioni on-line arm.mrcsb.com/sbdart/ • RTTOV http://www.metoffice.gov.uk/research/interproj/nwpsaf/rtm/

  15. ESEMPI DI MOTIVAZIONI PER LA POSIZIONE DEI CANALI PER ALCUNI STRUMENTI(MODIS e SEVIRI)

  16. CLM: Cloud microphysical properties

More Related