250 likes | 418 Views
IGARSS2011. July 28, 2011. Development of High Temperature Noise Source (HTS) for Advanced Microwave Scanning Radiometer 2 (AMSR2). GCOM-W1. Tatsuhiro NOGUCHI. Kamakura Works, Mitsubishi Electric Corporation. Contents. 1. Introduction (GCOM) 2. AMSR2 Summary 3. HTS Design Concept
E N D
IGARSS2011 July 28, 2011 Development of High Temperature Noise Source (HTS) for Advanced Microwave Scanning Radiometer 2 (AMSR2) GCOM-W1 Tatsuhiro NOGUCHI Kamakura Works, Mitsubishi Electric Corporation
Contents 1. Introduction (GCOM) 2. AMSR2 Summary 3. HTS Design Concept 4. Evaluation 5. Conclusion
GCOM-W2 GCOM-W3 GCOM-C2 GCOM-C3 1. Introduction (GCOM) GCOM: Global Change Observation Mission 5-years (W: Water, C: Climate) GCOM-W1 Launch GCOM-C1 Launch Japanese fiscal year 2011 year Sensor GCOM-W1: AMSR2 (Advanced Microwave Scanning Radiometer 2) GCOM-C1 : SGLI (Second-generation Global Imager)
AMSR2 SU (Sensor Unit) AMSR2 CU (Control Unit) 1. Introduction (GCOM) AMSR2 on GCOM-W1 Observation Data GCOM:Global Change Observation Mission AMSR2:Advanced Microwave Scanning Radiometer 2 ・Integrated Water Vapor・Integrated Cloud Liquid Water・Precipitation ・Sea Surface Temperature ・Soil Moisture, etc +Y Axis perpendicular direction to orbit plane +X Axistraveling direction Contribution ・Understand global environment changes Climate prediction models International environmental strategy ・Improve people’s lives Weather forecasting Fishery Information +Z Axis geocentric direction GCOM-W1
AMSR2 MWA AMSR2 CU 2. AMSR2 Summary AMSR2 SU
2. AMSR2 Summary Key Parameters of Heritage AMSR
AMSR2 observation concept 47.5° 55° 55° 61° 1,450km wide scan 1450km Features 1,450km wide scan Calibrate once per each scan (1.5s), using HTS and CSM 2. AMSR2 Summary Main Reflector CSM (Cold Sky Mirror) HTS (High Temperature noise Source) Feed Radiationfrom Earth AMSR2 SU
High temp.calibration point TH TOBS Observationpoint TL SOBS SH SL Low temp.calibration point 3. HTS Design Concept Calibration Method CSM Brightnesstemperature HTS Microwavestrength TCP (Thermal Control Panel) Feed 300 HTS Mission 300 Uniform temperature of microwave absorbersIrradiate Feed with stabilized brightness temperature 300 unit:mm MicrowaveAbsorbers HTS (mass:4kg)
Extremely sever specification <Comparative example : a normal satellite equipment > Allowed temperature range : -10 to +50degC Thermal Design Concepts • Radiate a constant temperature heat to the microwave absorbers- Insulate microwave absorbers • from the external thermal environment 3. HTS Design Concept HTS Performance Specification - Reference temperature of HTS : 20degC- Temperature distribution of Microwave Absorbers : 2.5degC or less DT : 2.5degC or less 20degC HTS
Radiation heat from HTS walls MLI To support structure Sensor Unit Radiation heat from TCP *Materials: Aluminum alloy (HTS wall / TCP) *Heater control: All six planes (HTS wall / TCP) 3. HTS Design Concept Thermal Design (Heater Control) Heater Design Concept ・Heater Control of HTS Walls and TCP ・Thermal Radiation from HTS Walls and TCP
3. HTS Design Concept Thermal Design (Thermal Insulation) MLI Thermalinsulation spacers Shield Thermal interface Sensor Unit • Solar heat power incidence • Outer space radiationheat Shield Thermalinsulation spacers Design Concept ・MLI (Multi Layer Insulation) ・TCP and Sun-Shields for HTS ・Thermal insulation spacers
Thermal Vacuum Test (2) IR Method(3) Solar Method IR method Solar method Thermal vacuum test configurations 4. Evaluation Analysis (1) On-orbit Thermal Analysis AMSR2 Thermal Math Model
Thermal Analysis Result Case High temp. case Low temp. case Temp. distribution 1.8degC 2.0degC Spec. < 2.5degC < 2.5degC HTS avg. power 2.9W 8.0W TCP Avg. power 91.1W 139.8W 4. Evaluation Thermal Analysis Condition
1.5degC 1.8degC 3900s 1560s 4. Evaluation Sunset Sunshine Sunset Microwave absorbers’ temperature trends (high temperature case) Factor of temperature changesof microwave absorbers Temperature fluctuation of feed coversIncidence of solar light from gap between HTS and TCP
Sunset Sunset Sunshine 18.27 [Unit:degC] 20.13 Feed cover 1560s Temperature contour figure(high temperature case) Feed cover 4. Evaluation 1.8degC < 2.5degC 1560s Microwave absorbers’ temperature trends Factor of temperature changesof microwave absorbers Temperature fluctuation of feed coversIncidence of solar light from gap between HTS and TCP
Sunset Sunset Sunshine 20.02 21. 57 Sensor Unit [Unit:degC] 3900s Temperature contour figure(high temperature case) Solar light incidence 4. Evaluation 1.5degC < 2.5degC 3900s Microwave absorbers’ temperature trends Factor of temperature changesof microwave absorbers Temperature fluctuation of feed coversIncidence of solar light from gap between HTS and TCP
10.0 10.1 10.23 9.83 9.99 9.99 9.95 10.0 10.0 10.0 10.1 9.29 9.99 9.89 9.89 9.94 10.0 9.82 9.88 9.64 9.89 10.0 9.68 9.74 9.82/10.1/10.2 9.93/9.93/9.75 9.90 9.77 9.55 9.87 9.65 9.70 9.29 9.52 9.95 9.94 9.88 9.67 10.0 10.2 9.00 9.70 9.34/9.95/10.1 9.90 9.74/9.63/9.19 9.55 9.74/9.97/10.0 9.94/10.0/9.66 9.63 10.0 9.59 9.96 9.47 9.26 9.74 10.1 10.0 9.05 9.57 9.05/9.69/9.92 10.3 9.84/9.89/9.37 10.0 9.72 10.1 9.78 10.0/10.0 9.64 10.1 9.76 10.1 Case 2 Case 1 [Unit:degC] [Unit:degC] 10.2 9.70 10.1 9.34 10.0/9.97 9.97 9.98 4. Evaluation Temperature Distribution of Microwave Absorbers Conclusion (Thermal Vacuum Test IR Method) ・Case1 Temperature Distribution: 0.6 degC → Complete Validity verification of design concepts ・Case2 Temperature Distribution: 1.2 degC → Meet performance specification
0.3 degC << 2.5 degC 4. Evaluation Temperature Trends of Microwave Absorbers Conclusion(Thermal Vacuum Test Solar Method) ・Temperature increase of microwave absorbers within Solar light incidence (150s) 0.3 degC max → negligible in orbit operation
Future plan ・Launch within Japanese fiscal year 2011 ・On-orbit evaluation 5. Conclusion Conclusion ・Validity verification of the thermal design concepts of HTS was conducted by thermal analysis on orbit and thermal vacuum tests of development model ・Specification of temperature distribution : 2.5degC or less Design result: 1.8degC at high temperature case 2.0degC at low temperature case ・Calibration and measurement performance of AMSR2 will be improved more than a previous model.
RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V RX-V LNA-V LNA-V LNA-V LNA-V LNA-V LNA-V RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H RX-H LNA-H LNA-H LNA-H LNA-H LNA-H LNA-H Cable Cable SENS UNIT (SU) SENSOR UNIT (SU) CONTROL UNIT (CU) CONT UNIT (CU) OBM-XV OBM-XV OBM+YV OBM+YV OBM-XH OBM+XH OBM-YH OBM-YH GCOM-W1 Satellite GCOM-W1 Satellite 衛星システム 衛星システム MWA-A MWA-A MWA-B Feed Feed Receiver Receiver Antenna Antenna ADE-B ADE-B ADE-A ADE-A 6.9GHz 7.3GHz DIV SPC-B SPC-B 10.65GHz 10.65GHz SPC-A SPC-A SPS SPS ADM ADM MDC data PCD data TLM CMD MDP data Time data TLM CMD 18.7GHz 23.8GHz 18.7GHz 23.8GHz 36.5GHz 36.5GHz Main Reflector Main Reflector Heater Heater 89GHz-A 89GHz-A TCC TCC 89GHz-B 89GHz-B 10/18/23/89-A 6/36/89-B 6/36/89-B Heater Heater PDUC 1 PDUC 1 Deployment Structure Deployment Structure BUS BUS DC/DC RX1-B CAL ASSY CAL ASSY DC/DC RX2-B DC/DC RX2-B DC/DC RX2-B PDUS PDUS TCS TCS DC/DC RX1-A DC/DC RX2-A DC/DC RX2-A CSM CSM DC/DC RX1-A BUS PDUC 2 HTS HTS Thermal Control Panel Structure Structure Structure Structure Integration Parts Integration Parts Integration Parts Integration Parts Release Bolt Catcher Release Bolt Catcher Release Bolt Catcher Release Bolt Catcher Separation Device Separation Device Separation Device Separation Device EED EED Back-up Chart AMSR2 Block Diagram
Back-up Chart Key Performance of AMSR2
Back-up Chart NEDT Comparison for AMSR-E/AMSR2