1 / 20

The 0-neutrino double beta decay search with Tin-loaded liquid scintillator

The 0-neutrino double beta decay search with Tin-loaded liquid scintillator. 연세대 : 황명진 , 권영준 서울대 : 곽정원 , 김상열 , 김선기 , 김승천 , 명성숙 , 방형찬 , 양혜영 , 이주희 , 이직 , 이현수 , 이명재 , 최정훈 세종대 : 김영덕 , 이정일 경북대 : 김홍주 , 소중호 , 양성철 이화여대 : 박일흥 , 한인식 메릴린드대 : 서은숙 , 이무현 IHEP:J.Li 칭화대 : J.J.Zhu,D.He,Q.Yue.

Download Presentation

The 0-neutrino double beta decay search with Tin-loaded liquid scintillator

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The 0-neutrino double beta decay search with Tin-loaded liquid scintillator 연세대:황명진,권영준 서울대:곽정원,김상열,김선기,김승천,명성숙,방형찬, 양혜영,이주희,이직,이현수,이명재,최정훈 세종대:김영덕,이정일 경북대:김홍주,소중호,양성철 이화여대:박일흥,한인식 메릴린드대:서은숙,이무현 IHEP:J.Li 칭화대:J.J.Zhu,D.He,Q.Yue

  2. Why bb decay is important?

  3. 0n-DBDPresent best experimental limits * Staudt, Muto, Klapdor-Kleingrothaus Europh. Lett 13 (1990) 31 Experiment Isotope T1/20n (y) <mn>* (eV) Range <mn> 6.0 48Ca > 1.8 ´ 1022 Ogawa I. et al., submitted 2002 76Ge > 1.9 ´ 1025 0.35 < 0.3 - 2.5 Klapdor-Kleingrothaus et al. 2001 > 1.57 ´ 1025 0.38 < 0.3 - 2.5 Aalseth et al 2002 4.8 < 1.4 - 256 100Mo > 5.5 ´ 1022 Ejiri et al. 2001 1.9 < 1.8 - 6.2 116Cd > 1.3 ´ 1023 Zdenko et al. 2002 128Te > 7.7 ´ 1024 1.0 < 1.0 - 4.4 Bernatowicz et al. 1993 130Te > 2.1 ´ 1023 1.5 < 0.9 - 2.1 Mi DBD n 2002 136Xe > 7 ´ 1023 1.8 < 1.4 - 4.1 Belli et al. submitted PLB

  4. Why metal loaded liquid scintillator? • Advantage • a) high-Z can be loaded to LS (>50% or more) • b) Fast timing response (few ns) • c) Low cost of LS, Large volume is possible • d) U/Th/K background for LS is low and purification • is known • Disadvantage • a) Bigger volume is necessary (C,H in LS, low density) • b) Lowerlight output (~15% of NaI(Tl))

  5. Passive shielding at Y2L(700m depth) PE shield (5cm) Pb shield (15cm) Mineral Oil shield (30cm)

  6. Double beta decay detector Quartz glass Plastic Dimension R = 5cm H = 14.94cm V = 1.15L Teflon

  7. TMSN40% • TMSN : 347ml (456g, 1.314g/ml) • PC : 753ml (671g, 0.891g/ml) • TMSN40% = TMSN + PC • TMSN : 456g/(456g + 671g) = 40% • Sn = 456g/(456g + 671g) * 119/178 -> 27%

  8. TMSN40% Calibration keV keV -> Resolution 8% , 0.9keV/ADC Channel

  9. Resolution = 1 / sqrt(N) • Resolution 8% -> 156.25 pe • 54Mn 834keV • 156.25pe/834keV = 0.187pe/keV

  10. TMSN40% Energy Spectrum by 500MHz FADC pol3 + gaus fitting keV

  11. Sensitivity • T1/2 = log 2 ´e ´ N ´ T / dS • e : efficiency • N : Number of double beta nuclei • T : Data taken time with year • dS : mean value + 1.64s of Gaussian fitted area • (mean value is Q-value) • T1/2 = 1.71x1019 year by 90% C.L (Preliminary)

  12. Intrinsic radio-impurities b – a coincidence candidates 1. 238U chain • 214Bi : 3.27 MeV b-decay • g 214Po : 7.834 MeV a -decay • Lifetime of 214Po = 164.3 us • 190 keV Energy threshold

  13. 214Po – a sidesubtraction main side

  14. 214Bi - b spectrum 214Po – aspectrum Q=3.27MeV Q=7.834MeV keV 214Po - a decay - Quanching factor = 804/7834 = 10.3% - 4842개/75day = 65개/day

  15. 214Po - a half-life T 1/2 = 163.7us s s T 1/2 = 235.9us * log(2) = 163.5 us

  16. 2. 232Th chain • 212Bi : 2.254 MeV b-decay • g 212Po : 8.784 MeV a -decay • Lifetime of 212Po = 299 ns • 1ch = 2ns 1x 3x a b channel

  17. 212Bi - b spectrum 212Po - a spectrum Q=2.254MeV Q=8.784MeV 212Po - a decay - Quanching factor = 940/8784 = 10.7% - 281개/75day = 3.8개/day

  18. 212Po - a half-life T 1/2 = 299ns ns T 1/2 = 422.9ns * log(2) = 293.1 ns

  19. Summary 1. TMSN40% by 500MHz FADC (75 days) T1/2 = 1.71x1019 year by 90% C.L 2. 214Po - adecay -> 65개/day 3. 212Po - adecay -> 3.8개/day 4. World limit = 2~5x1017 year by 1952

  20. Plan • G4 simulation – intrinsic radio-impurities -> 238U, 232Th decay chains • Background reduction • Nd2EH and Zr2EH study • 2n DB study

More Related