600 likes | 646 Views
Explore how genes, alleles, and sex chromosomes impact human genetics. Learn about karyotyping, linkage groups, and genetic disorders like polydactyly and galactosemia. Understand inheritance patterns like autosomal dominant and recessive traits. Discover how genetic analysis through pedigrees sheds light on heritable traits.
E N D
Chromosomes andHuman Genetics Chapter 11
Genes • Units of information about heritable traits • In eukaryotes, distributed among chromosomes • Each has a particular locus • Location on a chromosome
Homologous Chromosomes • Homologous autosomes are identical in length, size, shape, and gene sequence • Sex chromosomes are nonidentical but still homologous • Homologous chromosomes interact, then segregate from one another during meiosis
Alleles • Different molecular forms of a gene • Arise through mutation • Diploid cell has a pair of alleles at each locus • Alleles on homologous chromosomes may be same or different
Sex Chromosomes • Discovered in late 1800s • Mammals, fruit flies • XX is female, XY is male • In other groups XX is male, XY female • Human X and Y chromosomes function as homologues during meiosis
X X X Y Y X X X XX XX XY XY Sex Determination eggs sperm Female germ cell Male germ cell sex chromosome combinations possible in new individual
The Y Chromosome • Fewer than two dozen genes identified • One is the master gene for male sex determination • SRY gene (sex-determining region of Y) • SRY present, testes form • SRY absent, ovaries form
appearance of structures that will give rise to external genitalia appearance of “uncommitted” duct system of embryo at 7 weeks Effect of YChromosome- anatomicaldevelopment 7 weeks Y present Y absent Y present Y absent testes ovaries 10 weeks ovary testis birth approaching
The X Chromosome • Carries more than 2,000 genes • Most genes deal with nonsexual traits • Genes on X chromosome can be expressed in both males and females
Karyotype Preparation - Stopping the Cycle • Cultured cells are arrested at metaphase by adding colchicine • This is when cells are most condensed and easiest to identify
Karyotype Preparation • Arrested cells are broken open • Metaphase chromosomes are fixed and stained • Chromosomes are photographed through microscope • Photograph of chromosomes is cut up and arranged to form karyotype diagram
Linkage groups Demo Need 20 students
Linkage Groups • Genes on one type of chromosome • Fruit flies • 4 homologous chromosomes • 4 linkage groups • Indian corn • 10 homologous chromosomes • 10 linkage groups
A A a B B b A a B b a b Full Linkage AB ab Parents: x F1 offspring: All AaBb meiosis, gamete formation 50%AB 50%ab With no crossovers, half of the gametes have one parental genotype and half have the other
A a a c c C A C Incomplete Linkage AC ac x Parents: F1 offspring All AaCc meiosis, gamete formation Unequal ratios of four types of gametes: a a A A C c C c Most gametes have parental genotypes A smaller number have recombinant genotypes
Crossover Frequency Proportional to the distance that separates genes Crossing over will disrupt linkage between A and B more often than C and D
Human Genetic Analysis • Geneticists often gather information from several generations to increase the numbers for analysis • If a trait follows a simple Mendelian inheritance pattern they can be confident about predicting the probability of its showing up again
Pedigree Dogs? Cats?
Pedigree • Chart that shows genetic connections among individuals • Standardized symbols • Knowledge of probability and Mendelian patterns used to suggest basis of a trait • Conclusions most accurate when drawn from large number of pedigrees
I II III IV V *Gene not expressed in this carrier. Pedigree for Polydactyly…next slide too 5,5 6,6 5,5 6,6 * 5,5 6,6 6,6 5,5 6,6 5,5 6 7 5,5 6,6 5,5 6,6 5,5 6,6 5,6 6,7 12 6,6 6,6
Genetic Disorder • A rare, uncommon version of a trait • Polydactyly • Unusual number of toes or fingers • Does not cause any health problems • View of trait as disfiguring is subjective
Genetic Disorder • Inherited conditions that cause mild to severe medical problems • Why don’t they disappear? • Mutation introduces new rare alleles • In heterozygotes, harmful allele is masked, so it can still be passed on to offspring
Autosomal Dominant Inheritance • Trait typically appears in every generation
Achondroplasia • Autosomal dominant allele • In homozygous form usually leads to stillbirth • Heterozygotes display a type of dwarfism • Have short arms and legs relative to other body parts
Huntington Disorder • Autosomal dominant allele • Causes involuntary movements, nervous system deterioration, death • Symptoms don’t usually show up until person is past age 30 • People often pass allele on before they know they have it
Autosomal Recessive Inheritance Patterns • If parents are both heterozygous, child will have a 25% chance of being affected
Galactosemia • Caused by autosomal recessive allele • Gene specifies a mutant enzyme in the pathway that breaks down lactose enzyme 1 enzyme 2 enzyme 3 GALACTOSE-1- PHOSOPHATE GALACTOSE-1- PHOSOPHATE LACTOSE GALACTOSE +glucose intermediate in glycolysis
X-Linked Recessive Inheritance • Males show disorder more than females • Son cannot inherit disorder from his father
Examples of X-Linked Traits • Color blindness • Inability to distinguish among some of all colors • Hemophilia • Blood-clotting disorder • 1/7,000 males has allele for hemophilia A • Was common in European royal families
Hutchinson-Guilford Progeria • Mutation causes accelerated aging • No evidence of it running in families • Appears to be dominant • Seems to arise as spontaneous mutation • Usually causes death in early teens
Duplication • Gene sequence that is repeated several to hundreds of times • Duplications occur in normal chromosomes • May have adaptive advantage • Useful mutations may occur in copy
Inversion A linear stretch of DNA is reversed within the chromosome segments G, H, I become inverted
Deletion • Loss of some segment of a chromosome • Most are lethal or cause serious disorder segment C deleted
Translocation • A piece of one chromosome becomes attached to another nonhomologous chromosome • Most are reciprocal • Philadelphia chromosome arose from a reciprocal translocation between chromosomes 9 and 22
Philadelphia Chromosome • First abnormal chromosome to be associated with a cancer • Associated with a chronic leukemia • Overproduction of white blood cells
A Reciprocal Translocation 1 2 Chromosome 9 and chromosome 22 exchanged pieces 6 13 15 19 20
An Altered Gene • When the reciprocal translocation occurred, a gene at the end of chromosome 9 fused with a gene from chromosome 22 • This hybrid gene encodes an abnormal protein that stimulates uncontrolled division of white blood cells
Does Chromosome Structure Evolve? • Alterations in the structure of chromosomes generally are not good and tend to be selected against • Over evolutionary time, however, many alterations with neutral effects became built into the DNA of all species
Aneuploidy • Individuals have one extra or less chromosome • (2n + 1 or 2n - 1) • Major cause of human reproductive failure • Most human miscarriages are aneuploids
Polyploidy • Individuals have three or more of each type of chromosome (3n, 4n) • Common in flowering plants • Lethal for humans • 99% die before birth • Newborns die soon after birth