1 / 7

1. 化简下列各式 :

1. 化简下列各式 :. 1. 6. (2) 2(lg 2 ) 2 +lg 2 · lg5+ (lg 2 ) 2 - lg2+1 ;. (3) lg5(lg8+lg1000)+(lg2 ) 2 +lg +lg0.06. (2) 原式 =lg 2 (2lg 2 +lg5)+ (lg 2 - 1) 2. =lg 2 +1 - lg 2. =lg 2 (lg2+lg5)+(1 - lg 2 ). (1) (lg5) 2 +lg2 · lg50;. 解 : (1) 原式 =(lg5) 2 +lg2(lg2+2lg5).

Download Presentation

1. 化简下列各式 :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1.化简下列各式: 1 6 (2) 2(lg 2)2+lg 2 ·lg5+ (lg 2)2-lg2+1 ; (3) lg5(lg8+lg1000)+(lg2 )2+lg +lg0.06. (2)原式=lg 2(2lg 2 +lg5)+ (lg 2-1)2 =lg 2+1-lg 2 =lg 2(lg2+lg5)+(1-lg 2) (1) (lg5)2+lg2·lg50; 解: (1)原式=(lg5)2+lg2(lg2+2lg5) =(lg5)2+(lg2)2+2lg2lg5 =(lg5+lg2)2 =1. =1. (3)原式=lg5(3lg2+3)+3lg22-lg6+lg6-2 =3lg5lg2+3lg5+3lg22-2 =3lg2(lg5+lg2)+3lg5-2 =3(lg2+lg5)-2 =1.

  2. 解:原式即为: loga[(x2+4)·(y2+1)]=loga[5(2xy-1)]. x ∴(x2+4)(y2+1)=5(2xy-1). 整理得x2y2+x2+4y2-10xy+9=0. 配方得(xy-3)2+(x-2y)2=0. x= 6, x=- 6, ∴ 或 xy-3=0, 6 6 y=, y=- , ∴ 2 2 x-2y=0, ∴ log8 =log8 =- . ∴ = . 1 1 1 2 3 2 y y x x 2.loga(x2+4)+loga(y2+1)=loga5+loga(2xy-1), 求 log8的值. y

  3. 8 3 x 3.已知lgx+lgy=2lg(x-2y), 求log 的值. y 解:注意到 lgab·lgba=1, 又已知 lgab+lgba=, 100 = -4= . 9 x x ∴ =4. ∴ log =log 4=4. y y 10 64 ∴lgab-lgba=- . 3 9 解: 由已知x>0, y>0, x-2y>0, ∴x>2y>0. ∵lgx+lgy=2lg(x-2y), ∴lg(xy)=lg(x-2y)2. ∴xy=(x-2y)2. ∴x2-5xy+4y2=0. ∴(x-y)(x-4y)=0. ∴x=y(舍去)或x=4y. 4.已知a>b>1, 且3lgab+3lgba=10, 求lgab-lgba的值. ∴(lgab-lgba)2=(lgab+lgba)2-4lgab·lgba ∵a>b>1, ∴lgab-lgba<0.

  4. 课堂互动讲练 5

  5. 课堂互动讲练

  6. 6(1)化简: (2)化简: (3)已知loga2=m,loga3=n,求a2m+n的值.

  7. 解 (1)原式= (2) (3)方法一 ∵loga2=m,∴am=2. ∵loga3=n,∴an=3. 故a2m+n=(am)2·an=4×3=12. 方法二 ∵loga2=m,loga3=n,

More Related