1 / 66

Future Directions in studying QCD aspects of Nuclear Physics

Future Directions in studying QCD aspects of Nuclear Physics.  + (1540). Gerard van der Steenhoven (NIKHEF/KVI). International Nuclear Physics Conference, Götenburg, Sweden, July 2 nd , 2004. What remains to be discovered ? (*). WMAP satellite: 70% dark energy 25% dark matter

Download Presentation

Future Directions in studying QCD aspects of Nuclear Physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Future Directions in studying QCD aspectsof Nuclear Physics +(1540) Gerard van der Steenhoven (NIKHEF/KVI) International Nuclear Physics Conference, Götenburg, Sweden, July 2nd, 2004

  2. What remains to be discovered ?(*) • WMAP satellite: • 70% dark energy • 25% dark matter • 5% visible matter • The task of LHC: • Unravel the Higgs Mechanism ~ 2% of the visible universe • The task of QCD nuclear physics: → Unravel the origin of 98% of the mass of the visible universe (*) After: J. Maddox, What Remains to be Discovered?, XXXX Press, 2000

  3. The QCD structure of the nucleon • Lattice QCD calculations: • Deep-Inelastic Scattering: (From: G. Bali, Glasgow) The nucleon contains a large amount of quark-antiquark pairs and gluons. gluon Quark-antiquark pair

  4. The challenges of QCD • Extrapolate s to the size • of the proton, 10-15 m: • For s > 1 perturbative expansions fail……… •  Non-perturbative QCD: • Proton structure & spin • Confinement • Nucleon-Nucleon forces • Hadron spectroscopy….. Lattice QCD simulations…

  5. Future directions • Hadronic form factors • Transition to pQCD, strangeness • Hadron spectroscopy • Pentaquarks, hybrids, glueballs,... • Spin structure • Gluons, transversity • Generalized parton distributions • Partonic correlations, orbital motion • Future facilities MAMI-C

  6. 1. Hadronic Form Factors • Physics issues: • Proton: new data onGEp(Q2)/GMp(Q2) • Pion: transition to pQCD? • Axial form factors: role strangeness in proton • Kaon and hyperon form factors: hadron size • Relevant new facilities: • MAMI-C…………………… 2005 • 12 GeV @ JLab …………. 2010 • PAX @ GSI ……………… 2012 (Letter of Intend)

  7. Proton Form Factors

  8. Time-Like Form Factors • Measure single-spin asymmetry in : → Relative phase ofGMandGE • Entirely new concept: (F. Rathmann et al., LOI – 2004) Polarized anti-protons in the HESR ring @ FAIR: - The PAX project -

  9. MAMI facility • MAMI-C: • Emax→1500 MeV • Starting in 2005

  10. 2. Hadron spectroscopy Harvest in 2003: • Allowed multi-q states in QCD: • states  mesons • states  baryons • states pentaquarks? Discovery Discovery CLAS Discovery

  11. New Narrow DsJ-states • BaBar studied decay • Two new mesons ? • The K+K-+-spectrum: 1+ @ 2.46 GeV 0+ @ 2.32 GeV

  12. New charmed baryons • SELEX experiment at FermiLab (E781) • 600 GeV/c π/Σ beam • Decay schematic: • Discoveries:

  13. New narrow S=+1 states Chiral-Soliton mod. prediction in 1997 by Diakonov, Petrov and Polyakov (97): Spring-8 H1 NA49

  14. Accumulating experimental evidence • Results of three more experiments: • In all cases: a narrow peak near 1535 MeV/c2 HERMES CLAS SAPHIR

  15. Overview of +(1535) data • Averaged mass value: • 1536.2 ± 2.6 MeV • /dof = 12.4/6 • Conf. level = 0.053 • Measured FHWMs: • in most cases consistent with exp. resolution • HERMES data: HERMES paper:A. Airapetian et al, Physics Letters B 585 (2004) 213

  16. Glueballs and Hybrids • Partonic systems predicted in QCD: • “What remains to be discovered”: • Tetraquarks • Glueballs • Hybrids • ……….?

  17. Glueball searches • Lattice QCD: flux tubes • Normal mesons: • JPC = 0-+1+-2-+ • Flux tubes (J=1, S=1): • JPC = 0-+0+- 1+-1-+2-+2+- exotic (mass ~ 1.7 – 2.3 GeV) • Real photons couple to exotics via -VM transition

  18. CHL-2 Hall D: the GlueX detector • At JLab 12 GeV beam: • coherent  beam • new exp. Hall (D) • GlueX detector Photon Flux 108g/s Charged Particles coverage 1° - 170° momentum reso 1 - 2% position reso 150 µm vertex reso 500 µm Photons energy measured 1° - 120° Pb glass reso 2 + 5%/√E barrel reso 4.4%/√E Trigger level 1 rate 20 kHz

  19. Hybrid searches • Antiproton annihiliation: gluon rich • Production mechanism: • Charmonium production • Clear signature/tag • Not so many states

  20. What is to be expected? • First glimpse ??

  21. PANDA @ FAIR* : pellet target, particle ID, ~4 (*) Facility for Anti-proton and Ion Research

  22. 3. Search the carriers of proton spin • Three possible sources: • quarks: • valence quarks • sea quarks • gluons • orbital momentum • Mathematically: ½ = ½ Sq + DG + Lq EMC: q ~ 10% ~ 20  10 % ? ?

  23. How to probe the quark polarization? Polarized deep inelastic electron scattering Measure yield asymmetry: Parallel electron & proton spins Anti-parallel electron & proton spins In the Quark-Parton Model: Spin-dependent Structure Function

  24. QCD analysis of world data (’03) • Next-to-Leading-Orderanalysis of -data Excellent data forx > 0.01

  25. Polarized Parton Densities • First moments: • input scale • pol. singlet density: • pol. gluon density: There must be other sources of angular momentum in the proton

  26. Future data on and • Assume 400 pb-1 collected at e-RHIC: Domains of existing precision data

  27. Flavour decomposition of spin • Semi-inclusive deep inelastic lepton scattering • Hadron tags flavour of struck quark • Derive purity of tag from unpolarized data Key issue: role of sea quarks in nucleon spin

  28. Sea quark polarization • Up and down quarks haveopposite spins • Sea is unpolarized... • First dataon : [HERMES, hep-ex/0307064] Chiral Quark Soliton Model

  29. Future data on s and qvalence

  30. Gluon polarization • High-pTpion pair production: ’99: First direct evidence for non-zero gluon polarization Curves consistent with

  31.  or  photon  or  New experiments • Photon-gluon fusion: • COMPASS: • Open charm production: • HighpT–pairs (> 1 GeV) • Prompt photons (RHIC):

  32. Beam:160 GeV µ+ 2 . 108 µ/spill (4.8s/16.2s) Muon filter 2 MWPCs ECal2 & Hcal2 ~50m SM2 Muon filter 1 ECal1 & Hcal1 RICH GEM & MWPCs SciFi SM1 GEM & MWPCs Silicon SciFi Scintillating fibers • Polarization: • Beam: ~80% • Target:<50%> GEM & Straws Micromegas &Drift chambers Polarized target The COMPASS experiment

  33. First COMPASS data • Tagging of D*→D0: • y-axis: MK - MK - m  • x-axis: MK - mD0 80% 2002 data 317 D0 MKp -mD0 [MeV/c2]

  34.  or  photon  or   or  (heavy flavor)  or  Gluon Polarization at RHIC • Longitudinal double spin asymmetry in : • Dominant processes: Direct photon production Di-jet production

  35. Absolute Polarimeter (H jet) RHIC pC CNI Polarimeters BRAHMS PHOBOS RHIC s = 50 - 500 GeV PHENIX STAR Siberian Snakes Spin Rotators Partial Solenoid Snake LINAC BOOSTER Partial Helical Snake Pol. Source 500 mA, 300 ms AGS AGS pC CNI Polarimeter AGS Quasi-Elastic Polarimeter 200 MeV Polarimeter Rf Dipoles Polarized Protons at RHIC

  36. Anticipated improvement in xG(x) • Present QCD analysis • Expected STAR data M. Hirai, H.Kobayashi, M. Miyama et al.- preliminary

  37. What is transversity? transverse quark spin, dS • Three leading order quark distributions: momentum carried by quarks longitudinal quark spin,DS • Gluons don’t contribute toh1(x) - dominant in g1(x): •  Study nucleon spin while switching off the gluons • New QCD tests: Q2evolution h1(x); dS > DS(lattice)

  38. Measuring transversity - + quark flip target flip - + • The relevant diagram: • helicity flip of quark & target • chirally odd process • Consequences: • no gluon contributions…. … & measure single-spin asymmetries:

  39. Single – Spin Asymmetries • Sivers effect: AUT driven by orbital motion struck quark: measure L • Collins effect: AUT driven by fragmentation process: measure transversity

  40. First data on transversity ‘Collins’: ‘Sivers’: First evidence for non-zero Collins and Sivers effects

  41. Future options - COMPASS • First results based on 2002 data • Future: • Particle ID, more statistics, data on AUT for Collins/Sivers • Comparison HERMES data: measure Q2 evolution

  42. l+ q2=M2 l- q qT p p qL Future options - PAX FAIR@GSI • Polarized antiproton beam x polarized target: • Double transverse spin asymmetry: • Key issue: amount of -polar.: • Concept proven in FILTEX exp. • Separate -ring being studied Panda anti-P

  43. 4. Generalized Parton Distributions • Consider exclusive processes: • Deeply virtual Compton scatt. • Exclusive vector meson prod. • Collins et al. proved factorization theorem (1997): GPD Distribution amplitude (meson) final state Hard scattering coefficient (QCD) Generalized Parton Distribution (GPD) (Nasty: x = xBj for quarks and x = -xBj for antiquarks → x  [-1,1])

  44. GPDs give access toOrbital Angular Momentum of Quarks The remarkable properties of GPDs • Integration over x gives Proton Form Factors: Dirac Axial vector Pauli Pseudoscalar • The forward limit: • Second moment (X. Ji, PRL 1997):

  45. Applying the GPD framework • GPDs enter description of different processes: • Take Fourier transform of leading GPD: As Jq = ½q + Lqinformation on Jqgives data on Lq. GPDs Spatial distribution of quarks in the perpendicular direction

  46. A 3D-view of partons in the proton Form Factor Parton Density Gen. Parton Distribution A.V. Belitsky, D. Muller, NP A711 (2002) 118c

  47. Key differences Experimental access to GPDs • Exclusive meson electroproduction: • Vector mesons (0): • Pseudoscalar mesons (): • Deeply virtual Compton scattering: • Beam charge asymmetry: • Beam spin asymmetry: • Longitudinal target spin asymmetry:

  48. Selected DVCS results • Azimuthal dependence beam-spin asymmetry: • Beam-charge and target spin asymmetries……..

  49. Future data on DVCS at JLab • 2000 hr data taking in upgraded CLAS detector

  50. Prospects: short-term future ’04-’09 • The spin structure of the proton: • Gluon polarization DG: COMPASS (& HERMES & RHIC) • Exploring transversity h1(x): HERMES, COMPASS (& RHIC) • GPDs: HERMES & JLab • Hadron spectroscopy • Pentaquarks: JLab • Heavier hadrons: COMPASS • RHIC spin: • Optimizing polarization • First double-spin asymm. • Mainz: • starting MAMI-C

More Related