310 likes | 485 Views
Introduction to Charge Symmetry Breaking. Introduction What do we know? Remarks on computing cross sections for 0 production. G. A. Miller, UW. Charge Symmetry: QCD if m d =m u , L invariant under u $ d. Isospin invariance [H,T i ]=0, charge independence, CS does NOT imply CI.
E N D
Introduction to Charge Symmetry Breaking • Introduction • What do we know? • Remarks on computing cross sections for 0 production G. A. Miller, UW
Charge Symmetry: QCD if md=mu, L invariant under u$ d Isospin invariance [H,Ti]=0, charge independence, CS does NOT imply CI
Example- CS holds, charge dependent strong force • m(+)>m(0) , electromagnetic • causes charge dependence of 1S0 scattering lengths • no isospin mixing
Example:CIB is not CSB • CI !(pd!3He0)/(pd !3H+)=1/2 • NOT related by CS • Isospin CG gives 1/2 • deviation caused by isospin mixing • near threshold- strong N! N contributes, not ! mixing
Example –proton, neutron proton (u,u,d) neutron (d,d,u) mp=938.3, mn=939.6 MeV If mp=mn, CS,mp<mn, CSB CS pretty good, CSB accounts for mn>mp (mp-mn)Coul¼ 0.8 MeV>0 md-mu>0.8 +1.3 MeV
All CSB arises from md>mu & electromagnetic effects– Miller, Nefkens, Slaus, 1990 All CIB (that is not CSB) is dominated by fundamental electromagnetism (?) CSB studies quark effects in hadronic and nuclear physics
Importance of md-mu • >0, p, H stable, heavy nuclei exist • too large, mn >mp + Binding energy, bound n’s decay, no heavy nuclei • too large, Delta world: m(++)<mp, • <0 p decays, H not stable • Existence of neutrons close enough to proton mass to be stable in nuclei a requirement for life to exist, Agrawal et al(98)
Importance of md-mu • >0, influences extraction of sin2W from neutrino-nucleus scattering • ¼0, to extract strangeness form factors of nucleon from parity violating electron scattering
Outline of remainder Old stuff- NN scattering, nuclear binding energy differences comments on pn! d0 dd!4He0
NN force classification-Henley Miller 1977 Coulomb:VC(1,2)=(e2/4r12)[1+(3(1)+3(2))+3(1)3(2)] I: ISOSCALAR : a +b 1¢2 II:maintain CS, violate CI, charge dep. 3(1)3(2) = 1(pp,nn) or -1 (pn) III: break CS AND CI: (3(1)+3(2)) IV: mixes isospin
VIV»(3(1)-3(2)) • (3(1)-3(2)) |T=0,Tz=0i=2|T=1,Tz=0i isospin mixing • VIV=e(3(1)-3(2))((1)-(2))¢L +f((1)£(2))3((1)£(2))¢ L • magnetic force between p and n is Class IV, current of moving proton int’s with n mag moment • spin flip 3P0!1 P0 TRIUMF, IUCF expts
CLASS III: Miller, Nefkens, Slaus 1990 meson exchange vs EFT? md-mu
Search for class IV forces A -see next slide
ant Where is EFT?
A=3 binding energy difference • B(3He)-B(3H)=764 keV • Electromagnetic effects-model independent, Friar trick use measure form factors EM= 693 § 20 keV, missing 70 • verified in three body calcs • Coon-Barrett - mixing NN, good a, get 80§ 10 keV • Machleidt- Muther TPEP-CSB, good a get 80 keV • good a get 80 keV
Summary of NN CSB meson exchange Where is EFT?
np! d0Theory Requirements • reproduce angular distribution of strong cross section, magnitude • use csb mechanisms consistent with NN csb, cib and N csb, cib, Gardestig talk
Bacher 14pb Gardestig, Nogga, Fonseca, van Kolck, Horowitz, Hanhart , Niskanen plane wave, simple wave function, = 23 pb
Initial state interactions • Initial state OPEP, + • HUGE, need to cancel Nogga, Fonseca
plane wave, Gaussian w.f.photon in NNLO, LO not included23 pb vs 14 pb et al
Initial state LO dipole exchange 3P0 d*(T=1,L=1,S=1), d*d OAM=0, emission makes dd component of He, estimate using Gaussian wf
Theory requirements: dd!4He0 • start with good strong, csb np! d0 • good wave functions, initial state interactions-strong and electromagnetic • great starts have been made
Suggested plans: dd!4He0 • Stage I: Publish existing calculations, Nogga, Fonseca, Gardestig talks, HUGE • LO photon exchange absent now, no need to reproduce data • present results in terms of input parameters, do exercises w. params • Stage II: include LO photon exchange, Fonseca