1 / 54

Biology

Biology. 32-3 Primates and Human Origins. What Is a Primate?. What characteristics do all primates share?. What Is a Primate?. What Is a Primate?

betty_james
Download Presentation

Biology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biology Copyright Pearson Prentice Hall

  2. 32-3 Primates and Human Origins Copyright Pearson Prentice Hall

  3. What Is a Primate? • What characteristics do all primates share? Copyright Pearson Prentice Hall

  4. What Is a Primate? • What Is a Primate? • In general, primates have binocular vision, a well-developed cerebrum, relatively long fingers and toes, and arms that can rotate around their shoulder joints. Copyright Pearson Prentice Hall

  5. What Is a Primate? • Fingers, Toes, and Shoulders • Flexible digits enable primates to run along tree limbs and swing from branch to branch with ease. Copyright Pearson Prentice Hall

  6. What Is a Primate? • Primates’ arms are well adapted to climbing because they can rotate in broad circles around a strong shoulder joint. • In most primates, the thumb and big toe can move against the other digits. This characteristic allows primates to hold objects in their hands or feet. Copyright Pearson Prentice Hall

  7. What Is a Primate? • Well-Developed Cerebrum • The large cerebrum of primates enables them to display more complex behaviors than many other mammals. • Many species have social behaviors that include adoption of orphans and even warfare between rival primate troops. Copyright Pearson Prentice Hall

  8. What Is a Primate? • Binocular Vision  • Many primates have a flat face, so both eyes face forward with overlapping fields of view. This facial structure allows for binocular vision. • Binocular vision is the ability to merge visual images from both eyes, providing depth perception and a three-dimensional view of the world. Copyright Pearson Prentice Hall

  9. Evolution of Primates • What are the major evolutionary groups of primates? Copyright Pearson Prentice Hall

  10. Evolution of Primates • Evolution of Primates • The two main groups of primates are prosimians and anthropoids. Copyright Pearson Prentice Hall

  11. Evolution of Primates Hominoids New World monkeys Lorises and bush babies Old World monkeys Lemurs Gibbons Gorillas Tarsiers Orangutans Chimpanzees Humans Prosimians Anthropoids Primateancestor Copyright Pearson Prentice Hall

  12. Evolution of Primates • Prosimians  • Most prosimians alive today are small, nocturnal primates with large eyes that are adapted to seeing in the dark. • Living prosimians include bush babies, lemurs, lorises, and tarsiers. Copyright Pearson Prentice Hall

  13. Evolution of Primates Lorises and bush babies Lemurs Tarsiers Prosimians Primate ancestor Copyright Pearson Prentice Hall

  14. Evolution of Primates • Anthropoids   • Humans, apes, and most monkeys belong to a group called anthropoids, which means humanlike primates. • This group split early in its evolutionary history into two major branches. • These branches separated as drifting continents moved apart. Copyright Pearson Prentice Hall

  15. Evolution of Primates Old World monkeys New World monkeys Gibbons Orangutans Gorillas Chimpanzees Humans Anthropoids Copyright Pearson Prentice Hall

  16. Evolution of Primates • One branch of anthropoids is the New World monkeys. New World monkeys: • live almost entirely in trees. • have long, flexible arms to swing from branches. • have a prehensile tail, which is a tail that can coil around a branch to serve as a “fifth hand.” Copyright Pearson Prentice Hall

  17. Evolution of Primates • The other group of anthropoids includes Old World monkeys and great apes. • Old World monkeys live in trees but lack prehensile tails. • Great apes, also called hominoids, include gibbons, orangutans, gorillas, chimpanzees, and humans. Copyright Pearson Prentice Hall

  18. Hominid Evolution • Hominid Evolution • Between 6 and 7 million years ago, the hominoid line gave rise to hominids. The hominid family includes modern humans. • As hominids evolved, they began to walk upright and developed thumbs adapted for grasping. • They also developed large brains. Copyright Pearson Prentice Hall

  19. Hominid Evolution Modern human Copyright Pearson Prentice Hall

  20. Hominid Evolution Copyright Pearson Prentice Hall

  21. Hominid Evolution • The skull, neck, spinal column, hipbones, and leg bones of early hominid species changed shape in ways that enabled later hominid species to walk upright. • Evolution of this bipedal, or two-foot, locomotion freed both hands to use tools. • Hominids evolved an opposable thumb that enabled grasping objects and using tools. Copyright Pearson Prentice Hall

  22. Hominid Evolution • Hominids displayed a remarkable increase in brain size, especially in an expanded cerebrum—the “thinking” area of the brain. Copyright Pearson Prentice Hall

  23. Hominid Evolution • Early Hominids  • At present, the hominid fossil record includes these genera: • Ardipithecus • Australopithecus • Paranthropus • Kenyanthropus • Homo Copyright Pearson Prentice Hall

  24. Hominid Evolution • There are as many as 20 separate hominid species. • This diverse group of hominid fossils covers roughly 6 million years. • All are relatives of modern humans, but not all are human ancestors. • Questions remain about how fossil hominids are related to one another and to humans. Copyright Pearson Prentice Hall

  25. Hominid Evolution • Australopithecus  • An early hominid species, Australopithecus, lived from about 4 million to 1 million years ago. • The structure of Australopithecus teeth suggests a diet rich in fruit. Copyright Pearson Prentice Hall

  26. Hominid Evolution • The best known species is Australopithecusafarensis—based on a female skeleton named Lucy, who was 1 meter tall. • Members of the Australopithecus species were bipedal and spent some time in trees. Copyright Pearson Prentice Hall

  27. Hominid Evolution • Paranthropus  • The Paranthropus species had huge, grinding back teeth. • Their diets probably included coarse and fibrous plant foods. Copyright Pearson Prentice Hall

  28. Hominid Evolution • Recent Hominid Discoveries  • In 2001, a team had discovered a skull in Kenya. • Its ear resembled a chimpanzee’s. • Its brain was small. • Its facial features resembled those of Homo fossils. • It was put in a new genus, Kenyanthropus, which lived at the same time as A. afarensis. Copyright Pearson Prentice Hall

  29. Hominid Evolution Kenyanthropus platyops Homo erectus Copyright Pearson Prentice Hall

  30. Hominid Evolution • In 2002, paleontologists working in the desert in north-central Africa discovered another skull. • Called Sahelanthropus, it is nearly 7 million years old. • If it is a hominid, it would be a million years older than any hominid previously known. • It had a brain like a modern chimp and a flat face like a human. Copyright Pearson Prentice Hall

  31. Hominid Evolution Sahelanthropus tchadensis Copyright Pearson Prentice Hall

  32. Hominid Evolution • What is the current scientific thinking about hominid evolution? Copyright Pearson Prentice Hall

  33. Hominid Evolution • Rethinking Early Hominid Evolution  • Researchers once thought that human evolution took place in steps, in which hominid species became gradually more humanlike. Copyright Pearson Prentice Hall

  34. Hominid Evolution • Hominid evolution did not proceed by the simple, straight-line transformation of one species into another. • Rather, a series of complex adaptive radiations produced a large number of species whose relationships are difficult to determine. Copyright Pearson Prentice Hall

  35. Hominid Evolution Millions of years ago Copyright Pearson Prentice Hall

  36. Hominid Evolution • The hominid fossil record dates back 7 million years, close to the time that DNA studies suggest for the split between hominids and the ancestors of modern chimpanzees. Copyright Pearson Prentice Hall

  37. The Road to Modern Humans • The Road to Modern Humans • Paleontologists still do not completely understand the history and relationships of species within our own genus. • Other species in the genus Homo existed before Homo sapiens. Copyright Pearson Prentice Hall

  38. The Road to Modern Humans • The Genus Homo • The first fossils in the genus Homo are about 2.5 million years old. • These fossils were found with tools, so researchers called the species Homo habilis, which means “handy man.” Copyright Pearson Prentice Hall

  39. The Road to Modern Humans • 2 million years ago, a species called Homo ergaster appeared. It had a bigger brain and downward-facing nostrils that resembled those of modern humans. • At some point, either H. ergaster or a related species named Homo erectus began migrating out of Africa through the Middle East. Copyright Pearson Prentice Hall

  40. The Road to Modern Humans • Out of Africa—But Who and When? • Evidence suggests that hominids left Africa in several waves, as shown in the following diagram. Copyright Pearson Prentice Hall

  41. The Road to Modern Humans Copyright Pearson Prentice Hall

  42. The Road to Modern Humans • It is not certain where and when Homo sapiens arose. • One hypothesis, the multi-regional model, suggests that modern humans evolved independently in several parts of the world from widely separated populations of H. erectus. Copyright Pearson Prentice Hall

  43. The Road to Modern Humans • Another hypothesis, the out-of-Africa model, proposes that modern humans evolved in Africa between 200,000–150,000 years ago, migrated out to colonize the world, and replaced the descendants of earlier hominid species. Copyright Pearson Prentice Hall

  44. Modern Homo sapiens • Modern Homo sapiens • The story of modern humans over the past 500,000 years involves two main groups. Copyright Pearson Prentice Hall

  45. Modern Homo sapiens • The earliest of these species is called Homo neanderthalensis. • Neanderthals lived in Europe and Asia 200,000–30,000 years ago. • They made stone tools and lived in organized social groups. • The other group is Homosapiens—people whose skeletons look like those of modern humans. Copyright Pearson Prentice Hall

  46. The Road to Modern Humans • 50,000–40,000 years ago some populations of H. sapiens seem to have changed their way of life: • They made more sophisticated stone blades and elaborately worked tools from bones and antlers. • They produced cave paintings. • They buried their dead with elaborate rituals. Copyright Pearson Prentice Hall

  47. The Road to Modern Humans • About 40,000 years ago, a group known as Cro-Magnons appeared in Europe. • By 30,000 years ago, Neanderthals had disappeared from Europe and the Middle East. • Since that time, our species has been Earth’s only hominid. Copyright Pearson Prentice Hall

  48. 32-3 Copyright Pearson Prentice Hall

  49. 32-3 • The ability to merge visual images from both eyes is called • monocular vision. • binocular vision. • overlapping vision. • color vision. Copyright Pearson Prentice Hall

  50. 32-3 • Which of the following is true about hominid evolution? • The development of a large brain happened before bipedal locomotion. • There is a straight line of descent from the earliest hominid species to Homo sapiens. • The genus Homo appeared before the genus Australopithecus. • Hominid evolution took place as a series of adaptive radiations that produced a large number of species. Copyright Pearson Prentice Hall

More Related