en attendant que a commence l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
En attendant que ça commence… PowerPoint Presentation
Download Presentation
En attendant que ça commence…

Loading in 2 Seconds...

play fullscreen
1 / 77

En attendant que ça commence… - PowerPoint PPT Presentation


  • 233 Views
  • Uploaded on

En attendant que ça commence…. Le testament d’un vieux chamelier indiquait que son fils aîné recevrait la moitié de ses chameaux, que son cadet devrait en recevoir le tiers et que le benjamin devrait en recevoir le neuvième. Lorsqu’il mourut, le chamelier possédait dix-sept chameaux.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'En attendant que ça commence…' - bert


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
en attendant que a commence

En attendant que ça commence…

Le testament d’un vieux chamelier indiquait que son fils aîné recevrait la moitié de ses chameaux, que son cadet devrait en recevoir le tiers et que le benjamin devrait en recevoir le neuvième.

Lorsqu’il mourut, le chamelier possédait dix-sept chameaux.

Les trois fils se creusèrent la tête mais ne parvinrent pas à voir comment le testament pouvait être exécuté correctement sans dépecer les chameaux.

Ils firent finalement appel à un grand sage (VOUS) qui réfléchit un moment et trouva la solution à leur problème…

animation p dagogique math 1 nov 2007
Animation pédagogiqueMATH 1 - nov 2007

La construction du nombre, le développement de la pensée logique et la résolution de problème en maternelle

les maths l cole maternelle
Les maths à l’école maternelle ?
  • Ce que disent les programmes
  • Concepts et notions travaillés ou évoqués à l’école élémentaire
  • Les documents d’accompagnement
ce que disent les programmes
Ce que disent les programmes
  • Contrairement au cycle 2 et 3, Le programme pour l’école maternelle ne comporte ni partie « Mathématiques », ni autres parties disciplinaires.
  • Cependant, il est possible de repérer dans la rubrique « Découverte du monde », des propositions d’activités et des compétences qui trouveront un prolongement dans les apprentissages mathématiques ultérieurs (en lien avec les autres domaines d’activités: le langage au cœur des apprentissages, vivre ensemble, agir avec son corps).
concepts et notions travaill s ou voqu s l cole l mentaire
Concepts et notions travaillés ou évoqués à l’école élémentaire :
  • La théorie des ensembles : les relations d’équivalence (classement), les relations d’ordre (rangement)
  • Les notions de spatialisation (avec un vocabulaire spécifique à acquérir)
  • La numération (de type additif et de type positionnel) et les différents aspects du nombre (ordinal, cardinal, groupement et base, écriture en chiffres, lecture du nombre)
  • Les nombres non naturels : décimaux, fractionnels, rationnels
  • Les opérations sur les nombres : addition, soustraction et distance, multiplication, division euclidienne
  • Les fonctions numériques (proportionnalité, pourcentage,…)
  • Espace et géométrie :
    • Points, droites, plans, espaces
    • Parallélisme et perpendicularité
    • Notions de secteur angulaire
    • Construction et propriétés des figures planes
    • Construction et propriétés de solides
    • Transformations géométriques planes : symétrie, translation, rotation, homothétie, projection
  • Grandeurs et mesures : les unités de mesure, la notion de longueur, de périmètre, de masse, d’aire de surface, de volume, de durée
les documents d accompagnement math matiques ecole primaire
Les documents d’accompagnement :MathématiquesEcole primaire

À retrouver sur le site EDUSCOL

de la page 20 à 31 :

«Vers les mathématiques :

Quel travail en maternelle ?»

1 organisation p dagogique
1 – Organisation pédagogique

1.1 Offrir aux élèves un environnement riche, ouvert sur l’action et le questionnement

1.2 Aider les élèves à s’approprier une tâche

1.3 Proposer des problèmes pour développer l’activité opératoire de l’enfant

1.4 Inciter les élèves à échanger et à collaborer entre eux

1.5 Aider à la structuration des acquisitions notamment par l'expression et la communication

1.6 Évaluer les acquis

1.7 Penser les apprentissages sur le long terme

2 d veloppement de la pens e logique
2 – Développement de la pensée logique

Quelles compétences notionnelles pour favoriser le développement de la pensée logique ?

  • comparer des objets
  • classer des objets
  • Isoler des propriétés
  • ranger des objets
  • reconnaître et poursuivre des rythmes
  • interpréter et produire des symboles
  • respecter et produire des contraintes et des règles
  • anticiper,
  • déduire
  • induire
  • élaborer une stratégie
  • traiter une situation par essais et ajustements.
des propositions d activit s et des rep res donn s pour chaque classe
Des propositions d’activités et des repères donnés pour chaque classe

 En Petite Section :

  • classer des objets,
  • commencer à isoler certaines propriétés des objets et des collections.
  • repérer un intrus ou d’identifier un élément absent.
  • ranger, notamment pour ce qui concerne les grandeurs et les quantités
  • reconnaitre un rythme dans une suite linéaire ou la poursuivre : cela permet un travail sur les formes, sur les grandeurs (alternance court/long par exemple) ou sur les petites quantités (alternance un/trois, par exemple).
  • découvrir quelques jeux « à règle », en sachant que les enfants de cet âge sont souvent peu soucieux du respect de la règle et choisissent d’orienter leur action dans une autre direction.
slide10
 En Moyenne Section,
  • large utilisation des activités finalisées de comparaison, de classement et de rangement (Les classements demeurent simples : un seul critère)
  • codage plus ou moins figuratifs d’un objet, d’une propriété, d’un emplacement, d’un déplacement… pour se souvenir ou pour communiquer (cela permet l’entrée dans le monde de la symbolisation)
  • repérage de rythmes plus complexes, la réalisation de suites respectant ces rythmes, recherche d’éléments manquants dans de telles suites,
  • respect des contraintes d’un jeu (verbalisation et même élaboration de règles).
  • entrée dans l’univers de l’anticipation et de la déduction (essayer de prévoir le résultat d’une action, tenir compte du résultat d’un essai pour réajuster son action)
  • développement de la pensée inductive : c’est par exemple le cas lorsqu’il s’agit de compléter une suite selon un rythme non explicité verbalement, c’est également le cas lorsque l’enseignant amorce un tri, sans rien dire, et demande à un enfant de placer d’autres objets.
slide11
En Grande Section,
  • Multiples activités de comparaison, de classement et de rangement(organisation de l’espace, formes, grandeurs, quantités, organisation du temps.) dans des problèmes plus complexes (croisement de deux ou plusieurs critères utilisées simultanément, classement d’objets ou de collections en tenant compte de deux propriétés et pouvant déboucher sur une organisation de type tableau à double entrée…)
  • Symbolisation plus abstraites (utilisés pour représenter un objet, coder une propriété, désigner un déplacement,…) ; lecture, interprétation et production de symboles.
  • Reconnaissance et production de rythmes répétitifs ou évolutifs : par exemple, identification du rythme qui a présidé à la création d’une partie d’une suite pour pouvoir la compléter.
  • Sollicitation de la pensée inductive.
  • Développement de la capacité àdéduire, à élaborer une stratégie et à l’adapter en fonction des réponses obtenues (des jeux de portrait, de mastermind, de sodoku, des jeux d’alignement, de memory… )
  • Développement de la capacité à traiter une situation paressais et ajustements.
3 domaines d activit s
3 – Domaines d’activités

3.1 Repérage dans l’espace

  • En Petite Section,
  • En Moyenne Section,
  • en Grande section

3.2 Découverte des formes et des grandeurs

  • En Petite Section,
  • En Moyenne Section,
  • en Grande section

3.3 Approche des quantités et des nombres

  • En Petite Section,
  • En Moyenne Section,
  • en Grande section

3.4. Le temps qui passe

  • En Petite Section,
  • En Moyenne Section,
  • en Grande section
annexe rep rage des comp tences num riques
Annexe : Repérage des compétences numériques
  • 1. La comptine numérique
  • 2. La maîtrise du dénombrement
  • 3. La constitution d'une collection de cardinal donné
  • 4. Le recours spontané au dénombrement
  • 5. Le successeur d'un nombre
  • 6. La lecture des nombres
  • 7. Problèmes « arithmétiques »
slide14
Calculer la somme des nombres de 1 à 10
  • Puis la somme des nombres des 1 à 1000

en moins de 5 minutes

pourquoi les activit s math matiques
Pourquoi les activités mathématiques ?
  • Ce que disent les textes
  • le développement des compétences du sujet
  • les activités mathématiques dans notre vie
ce que disent les textes
Ce que disent les textes

« C’est à la maternelle que les élèves commencent à utiliser un mode de pensée mathématique et commencer à élaborer leurs premières connaissances dans ce domaine. »

slide17
« Comme les autres activités du domaine Découverte du monde, celles qui peuvent être reliées aux mathématiques contribuent :
  • à l’approche d’une culture générale équilibrée,
  • au développement de compétences transversales (s’exprimer, communiquer, coopérer…)
  • à l’installation des fondements d'une pensée scientifique et logique,

conditionnée par le développement des capacités :

      • à identifier des ressemblances et des différences,
      • à comparer,
      • à effectuer des classements ou des rangements,
      • à désigner et à symboliser,
      • à repérer et utiliser des rythmes,
      • à opérer de premières déductions.
  • à la construction de connaissances
ce que disent les textes de ce que doit faire et apprendre l enfant l cole maternelle
Ce que disent les textes… de ce que doit faire et apprendre l’enfant à l’école maternelle
c est dire d velopper des
C’est-à-dire … développer des :

Connaissances : des savoirs relatifs

  • Aux formes et aux grandeurs
  • Aux quantités et aux nombres
  • Au repérage dans espace et dans le temps
  • Au langage mathématique, à la symbolisation

Capacités : des savoir-faire

L’enfant apprend à :

  • résoudre des problèmes
  • faire des hypothèses et les tester
  • anticiper des situations et prévoir des conséquences,
  • élaborer une démarche pertinente afin de produire une solution personnelle
  • observer les effets de ses actes,
  • construire des relations entre les phénomènes observés,
  • identifier des caractéristiques susceptibles d’être catégorisées (trier, classer, mettre en relation, ranger…)
  • développer des procédures, les expliquer, les mettre en débat

Attitudes : des savoir- être

  • s’étonner, s’interroger et à questionner…
  • formuler des interrogations plus rationnelles,
  • oser se mettre en situation de recherche
  • procéder par essai et erreur
mais aussi des comp tences dans les domaines
Mais aussi des compétences dans les domaines :
  • du langage(communication, langage en situation, langage d’évocation, langage écrit/de symbolisation,…)
  • du vivre ensemble (échanger, communiquer, coopérer, accepter des contraintes,…)
  • de l’agir avec son corps
  • de la créativité

Parce que c’est à l’occasion d’activités globales que l’enfant découvre le monde, apprend à se le représenter et à construire des connaissances.

pourquoi les activit s math matiques dans notre vie
Pourquoi les activités mathématiques dans notre vie ?

Le but des activités scientifiques, techniques et mathématiques est toujours de résoudre un problème, d’agir sur le monde,…

C’est aussi prendre plaisir à chercher,

découvrir, jouer, résoudre des énigmes, se lancer des défis, comprendre, se sentir grandir, …

pour que chacun puisse faire le point avec lui m me
Pour que chacun puisse faire le point avec lui-même

Se remémorer

(et écrire pour se les rappeler)

les activités mathématiques

mises en place dans sa classe

ces derniers jours

enseigner les math matiques ou plut t mettre en place des activit s math matiques
Enseigner les mathématiques ou plutôt mettre en place des activités mathématiques
  • Ce que disent les textes
    • Quels types de problèmes ?
    • Quelle démarche ?
  • Quelles types de situation ?
  • Les pratiques habituelles
ce que disent les textes24
Ce que disent les textes
  • « L’école maternelle suscite ainsi toutes les occasions d’une découverte active du monde et en sollicite des représentations… »
  • « L’enrichissement des connaissances s’appuie sur des expériences vécues mais passe aussi par la découverte de documents grâce à la médiation de l’adulte qui lit, explique, commente les textes comme les images ou les schémas. »
  • « Les activités proposées doivent s’appuyer sur un matériel riche et varié : objets « tout venant », jeux, supports fabriqués par l’enseignant ou par les enfants… ».
  • « Les « activités papier-crayon » doivent avoir une place limitée… elles ne se justifient que si elles ont un lien avec un vécu (action effective, jeu..) qu’elles accompagnent ou qu’elles prolongent pour en garder une trace figurative ou symbolique… »
ce que disent les textes25
Ce que disent les textes

« La résolution de problèmes est au centre des activités mathématiques de l’élève. »

« Les élèves peuvent être confrontés à de véritables problèmes de recherche pour lesquels ils ne disposent pas de solution déjà éprouvées et pour lesquels plusieurs démarches sont possibles. »

« Dans ces activités, l’enseignant doit créer les conditions d’une réelle activité intellectuelle des élèves . »

quels types de probl mes
Quels types de problèmes

A l’école élémentaire, il existe quatre types de problèmes (qui correspondent à des objectifs d’apprentissage différents) :

  • Des problèmes dont la résolution vise la construction d’une nouvelle connaissance ; l’enfant, en interaction avec les autres, va construire de nouveaux savoirs  problèmes de découverte pour apprendre
  • Des problèmes destinées à permettre le réinvestissement de connaissances déjà travaillées, l’entraînement de nouveaux savoirs, qui permettent de s’exercer  problèmes d’application
  • Des problème plus complexe que les précédent dont la résolution nécessité la mobilisation de plusieurs catégories de connaissances ; ils permettent de mettre en œuvre les découvertes  problèmes complexes
  • Des problèmes centrées sur le développement des capacités à chercher : les élèves ne connaissent pas encore de solution expertes pour résoudre ce problème  problèmes pour chercher

A l’école maternelle, on ne proposera pas de problèmes complexes, par contre on pourra distinguer trois catégories de problèmes :

    • les problèmes pour apprendre : on vise des connaissances
    • les problèmes pour chercher : on développe l’esprit logique
    • Les problème pour s’entraîner : on développe l’automatisation
dans le document d accompagnement math matiques ecole primaire
Dans le document d’accompagnement :MathématiquesEcole primaire

De la page 7 à 19

Les problèmes pour chercher

  • Les fonctions de la résolution de problème
  • Les caractéristiques du problème pour chercher
  • Pourquoi des problèmes pour chercher
  • Mise en œuvre du problème pour chercher
  • Des exemples de problèmes pour chercher
un exemple
un exemple :

 Si on donne à un enfant ce personnage à refaire, il s’agit d’un problème pour apprendre ou pour s’entrainer.

Les contours des pièces sont visibles. L’élève doit reconnaitre, différencier les pièces, les formes, repérer les différences de taille et les orientations.

 Si on donne ce personnage à refaire, il s’agit d’un problème pour chercher.

Il ne s’agit plus seulement de reconnaitre les pièces ; les connaissances à disposition ne sont pas suffisantes. L’élève va essayer, peut se tromper et recommencer.

une autre exemple la carte aux toiles
Une autre exemple : la carte aux étoiles
  • Situation  :

3 cartes sur lesquelles

sont déjà collées 1, 2, 3 étoiles

12 étoiles à coller

  • But : Placer les 12 étoiles. Sur les 3 cartes il devra y avoir autant d’étoiles.
  • Variables didactiques :
    • Le nombre de cartes
    • Le nombre d’étoiles déjà collées sur chacune des cartes
    • les écarts entre ces nombres
    • Le nombre d’étoiles à placer
ce que disent les textes30
Ce que disent les textes
  • « Comme dans les autres cycles de l’école, la démarche s’articule autour d’un questionnement guidé par le maître et conduit à des investigations menées par les élèves.
  • Issue d’un questionnement provenant le plus souvent de l’activité des enfants, l’investigation menée en maternelle n’est pas conduite uniquement pour elle-même : elle débouche sur des savoir-faire et des connaissances. Même très élémentaires, ces derniers constituent un progrès important pour l’élève. »
une d marche qui n cessite la pr sence de l enseignant mais pas tout le temps
Une démarche qui nécessite la présence de l’enseignant… mais pas tout le temps …
quels types de situations
Quels types de situations ?

a- les situations fonctionnelles

b- les situations rituelles

c- les situations construites

a les situations fonctionnelles
a- les situations fonctionnelles
  • Elles naissent d’un besoin réel qui émerge de la vie quotidienne et de certains projets :
    • il faut apporter un crayon à chacun pour l’atelier,
    • préparer un goûter pour chacun,
    • regrouper des objets en vue d’une nouvelle utilisation,
    • répartir des objets entre des enfants ou des groupes,
    • s’organiser avant un travail,
    • fabriquer un jeu pour une autre classe,
    • réaliser un élément de décoration…
  • Ce sont de « vrais » problèmes, le but est précisé, facile à comprendre.

L’acceptation et l’engagement de l’élève seront favorisés si les enfants perçoivent la réalité du problème.

exemple les disques
Exemple :Les disques

 Situation

On a des disques de 3 tailles

et de 3 couleurs différentes

 But

Rechercher tous les empilements (grand, moyen, petit) de 3 disques de 3 couleurs différentes.

  • Au départ, les enfants créent librement

des superpositions.

  • Les solutions pourront ensuite être organisées

et mise en valeur.

 Variables didactiques

    • Nombre de disques
    • Nombre de couleurs
exemple un jeu fabriquer
Exemple : un jeu à fabriquer

On veut fabriquer un jeu pour le PS…

Pour cela, il faut fabriquer les pièces du jeu en pâte à sel de manière à ce que les pièces soient :

  • de 4 formes différentes    
  • de 3 couleurs différentes rougebleujaune
  • de 2 grandeurs différentes petit grand

Combien de pièces doit-on faire ? Lesquelles ?

Comment être sûrs de ne pas en oublier ?

b les situations rituelles
b- Les situations rituelles
  • Elles se répètent régulièrement voire quotidiennement : dénombrement des présents et des absents,…
  • Ce sont des « situations repères » mais elles ne sont pas suffisantes.

Les situations rituelles ne constituent pas à elles seules l’enseignement des mathématiques à l’école maternelle.

quelques objectifs de ces rituels dans le domaine des math matiques
Quelques objectifs de ces rituels dans le domaine des mathématiques

 Le temps qui passe :

  • L'organisation temporelle se structure à partir du temps propre.
  • L'enseignant permet à l'enfant d'installer ces moments dans les jalons chronologiques du temps social : succession des moments de la journée, succession des jours de la semaine ou du mois, succession des mois, de l'année).
  • Il conduit l'enfant à relier entre eux les différents systèmes de repérage : moment de la journée et heures (horloge), jours de la semaine et alternance des activités scolaires (calendrier), mois et saisons, mois et vacances...

 Se repérer dans le temps et utiliser les marques verbales de la temporalité :

  • L'enfant doit d'abord apprendre à utiliser les marques de l'énonciation qui lui permettent de situer le présent au moment où il parle et, de part et d'autre, le passé et le futur.
  • En général, elles font partie du langage en situation qui s'acquiert de manière quasi spontanée à condition que l'enfant soit partie prenante d'échanges réguliers.

 Approche des quantités et des nombres :

  • A l'école maternelle, l'enfant peut être confronté à des problèmes portant sur les quantités : appel (comptage des présents, des absents…).
  • Par des tâches de comparaison, d'égalisation, de distribution, de partage, l’élève fait appel à une estimation perceptive et globale (plus, moins, pareil... ), plus tard à la correspondance terme à terme ou à la quantification.
  • Une première correspondance est établie entre désignations orales et écritures chiffrées par exemple en utilisant une file numérique ou un calendrier.
c les situations construites
c- les situations construites
  • Ce sont les situations qui s’appuient sur un jeu, un matériel, un support fabriqué par l’enseignant ou par les enfants, éventuellement une « activité papier-crayon » en les utilisant souvent autrement que ce qui est prévu…
  • L’enseignant a la maîtrise de ces situations. Il en fixe la nature, le moment, la forme et les variables.
  • Ces situations nécessitent des manipulations et des interactions

On peut en trouver :

  • sur le site de BJ3 : Conférence d’André JACQUART Développement de la pensée logique et résolution de problèmes en maternelle - St Marcel Bel Accueil – 18 avril 2007
  • Les ouvrages Ermel
  • « Découvrir le monde avec les mathématiques » Dominique Valentin - Hatier
  • « Faire des mathématiques à l’école maternelle » Alain Pierrard - CRDP Grenoble
  • « Enseigner les mathématiques à la maternelle » Françoise Cerquetti-Aberkane et Catherine Berdonneau - Hachette éducation
  • « Mathématiques actives pour les tout-petits » de Catherine Berdonneau - Hachette éducation
exemple mettre la table pour les poup es
Exemple :mettre la table pour les poupées

Les poupées ont faim ;

il faut aller chercher dans la cuisine

le nombre d’assiettes, de fourchettes,

de couteaux, de cuillères, de verres

nécessaire pour mettre la table

et les ramener sur le plateau

quelques pratiques habituelles
Quelques pratiques habituelles
  • Les enfants de maternelle sont rarement confrontés à de véritables situations d’apprentissage autour des savoirs mathématiques.
  • La plupart du temps, ces apprentissages sont cantonnés à des activités rituelles (appel, goûter, repas, calendrier, etc.) ou fonctionnelles (mise en atelier, anniversaire, séance de motricité)
  • Les activités proposées manque trop souvent d’ambition.
  • Les « activités papier-crayon » sont trop nombreuses souvent sans lien avec un vécu (action effective, jeu..) qu’elles accompagnent ou qu’elles prolongent pour en garder une trace figurative ou symbolique…
  • Il apparaît indispensable de proposer, parallèlement aux activités rituelles, fonctionnelles ou guidées, des activités problématiques aux élèves où ceux-ci pourront faire preuve d’initiative, mobiliseront des connaissances et imagineront des solutions.
et si chacun e interroge ses propres pratiques
Et si chacun-e interroge ses propres pratiques…

Au regard des différentes situations évoquées précédemment…est-ce que je mets en place :

  • Surtout des activités rituelles ?
  • Surtout des activités fonctionnelles ?
  • Surtout des activités d’entrainement (« activités papier crayon ») ?
  • Des problème pour apprendre ? situations d’apprentissage autour des savoirs mathématiques (activités problématiques aux élèves où ceux-ci pourront faire preuve d’initiative, mobiliseront des connaissances et imagineront des solutions)
  • Des problème pour chercher pour lesquels plusieurs démarches sont possibles ?
  • Est-ce que ces activités débouchent débouche sur des savoir-faire et des connaissances clairement identifiés par l’enfant ?
slide46
   
  •    

Disposez ces dix pièces en réalisant cinq alignements formés chacun de quatre pièces

varier les comptines num riques apprises
Varier les comptines numériques apprises

Le nid

Ils étaient 5 dans le nidEt le petit dit : " Poussez-vous, poussez-vous ! "Et l'un d'eux tomba du nid.Ils n'étaient plus que 4 dans le nidEt le petit dit : " Poussez-vous, poussez-vous ! "Et l'un d'eux tomba du nid.Ils étaient plus que 3 dans le nid…Ils n'étaient plus que 2 dans le nidEt le petit dit : " Poussez-vous, poussez-vous ! "Et l'un d'eux tomba du nidEt le petit dit : " aaaaah ! « 

On peut en trouver un très grand nombre sur :

http://www.crdp-strasbourg.fr/cddp68/Tele/comptine.rtf

premiere situation
PREMIERE SITUATION
  • Objectif : travailler le concept de collection.
  • Dispositif : une demi-classe.
  • Matériel : des pièces géométriques de formes, de tailles et de couleurs différentes.
  • Déroulement :
  • Phase 1 : (qui sera une évaluation diagnostique pour l’enseignant)

Montages (empilements) à réaliser.

Rappel consigne. 5, 6, 7 éléments.

Verbalisation, problèmes rencontrés Photocopie des réalisations des enfants

slide50
 Phase 2 : présentation des montages dessinés.
  • Consigne : " Prépare les pièces qui vont permettre à l'autre groupe de réaliser les montages ".

Selon les montages produits dans la phase 1, propositions de montages plus ou moins complexes (5, 6 ou 7 pièces).

slide51
 Phase 3 : validation des réponses ; échange du matériel. Montage d'après le dessin et la collection.

Remarques :

  • Selon le montage, certaines formes sont difficiles à reconnaître.
  • Le dessin a été agrandi pour une meilleure lisibilité : certains enfants ont été gênés par ce changement d'échelle (les petites pièces agrandies ont presque la même taille que les grandes pièces réelles).

 Suite : Une fois que toute la classe a fait l'activité, le matériel constitué par les pièces et le montage dessiné est proposé dans un atelier. Même travail sur de nouveaux montages, entraînement.

deuxieme situation
DEUXIEME SITUATION
  • Objectif : travailler le concept d'ordre.
  • Dispositif : une demi - classe.
  • Matériel : montages dessinés, collection des pièces préparées pour chaque montage (dans une barquette). Feuille de papier, crayon, crayons de couleur, boîte de pièces.
  • Déroulement
  • Phase 1 : chaque élève dispose d'un montage dessiné et de la barquette contenant la collection de pièces correspondante
slide53
Vérification : avec la consigne : " La collection dans la boîte permet-elle de faire le montage ? ".
slide54
 Phase 2 : la consigne est :

" Certains enfants, malgré le montage dessiné et la collection des pièces, ne savent pas refaire le montage.

Il faut expliquer comment faire le montage ".

slide55

Les pièces servent de gabarit.

    • Elles sont coloriées et numérotées, éparpillées sur la feuille.
    • Les pièces sont alignées dans l'ordre de montage ; (au bout de la feuille, virage signalé par des flèches)
slide56
Les pièces sont dessinées à la main et coloriées(problème de forme et surtout de taille)
  • Elles sont numérotées.
  • Elles sont dessinées dans l'ordre
slide57
Phase 3 : Validation des messages explicatifs : refaire le montage à partir de la fiche et vérifier avec le modèle dessiné.

Certaines fiches posent problème. Analyse collective.

  • Remarques:Dans cette situation, la solution au problème est bien la prise en compte de l'ordre d'empilement des pièces : pour réussir, il s'agit donc, pour l'enfant de trouver une manière d'indiquer l'ordre d'empilement.

 Suite : Une fois que toute la classe a fait l'activité, de nouvelles fiches de montage sont proposées dans un atelier.

troisi me situation les polydrons
Troisième situation : les polydrons

Objectif : mettre en œuvre une stratégie d'énumération d'une collection donnée en vue de constituer une collection identique.

Niveau concerné : grande section.

But à atteindre : l'enfant a réussi s'il a constitué une collection formée de faces identiques à toutes celles d'un solide donné.

Matériel : LOKON : matériel que l'on trouve dans le commerce (Celda), des barquettes pour rassembler les faces choisies.

Des solides construits avec les pièces du LOKON (solides complexes, difficulté pour compter les pièces)

Dispositif : Demi-classe : travail en binôme ou individuel.

La tâche : rassembler les pièces qui permettront de fabriquer un objet identique à celui qui est donné.

Déroulement

  • Phase 1 : Présentation et description du matériel
  • Phase 2 : Action

Consigne :" tu dois préparer dans la barquette les pièces qui vont permettre à l'autre groupe de fabriquer le même objet que celui-ci ".

Les enfants n'ont pas le droit de défaire le solide.

Chaque élève ou chaque binôme détermine et constitue la collection.

slide60
Phase 3 : Formulation - Mise en mots des procédures utilisées

" Comment es-tu sûr qu'il y a toutes les pièces ? Tu n'as pas le droit de refaire le solide ". Verbalisation :

    • des stratégies.
    • des obstacles rencontrés.
    • des idées de nouvelles stratégies.

Phase 4 : Validation du but à atteindre

Le solide référent et la barquette contenant les pièces préparées sont donnés aux autres élèves pour qu'ils construisent le solide.

Stratégies attendues

  • Comptage du nombre de pièces de chaque sorte en s'appuyant sur :
  • un marquage de chaque pièce par une trace indiquant qu'on l'a comptée.
  • un marquage à l'aide de gommettes des pièces qui ont été comptées.
  • Remarque : La situation a bien comme enjeu l'exploration exhaustive d'une collection d'objets (les faces du solide), par la mise en œuvre de stratégies d'énumération.
albums et mathematiques
ALBUMS et MATHEMATIQUES

On peut distinguer deux sortes d’albums :

 Les albums " mathématiques ", c’est à dire ceux qui ont été créés avec des " ingrédients mathématiques ". Ce sont souvent des " albums à compter " qui invitent l’enfant à dénombrer des collections, à utiliser la comptine numérique ou même à " calculer " par comptage ou surcomptage.

Les albums " ordinaires " dans lesquels il n’y a, à priori, aucune " intention mathématique " mais qui à travers des illustrations, les personnages évoluant dans un récit, proposent des situations d’ordre mathématique.

L’ exploitation en classe permet d’inciter les enfants à réfléchir et à utiliser les propriétés des nombres…

en s’appuyant par exemples sur :

  • les illustrations qui permettent des activités de dénombrement ou une première approche du calcul(résolution de problèmes additifs et soustractifs simples augmentation ou diminution de quantités, recherche de compléments, décomposition de quantités, partage,… )
  • les motifs géométriques ou des symboles utilisés pour les illustrations
  • le vocabulaire lié à l’orientation, à la topologie ou à la géométrie
  • l’histoire qui conduit à des activités de classement ou de rangement.
les histoires compter
Les histoires à compter,

Pour travailler :

  • Le dénombrement des collections et perception des principes du comptage (particulièrement le principe cardinal)
  • La compréhension du « nombre suivant » (un de plus que le nombre précédent) et du « nombre précédent » (un de moins que le nombre suivant).
  • La perception de la suite écrite des chiffres et mémorisation de certaines graphies
  • La mémorisation de la suite orale des nombres en correspondance avec la suite écrite, mise en relation avec les bandes numériques construites dans la classe (bande numérique collective mais aussi bande numérique individuelle des élèves).

Il est souhaitable :

  • que certains de ces livres soient laissés à la libre disposition des élèves pour qu’ils puissent les feuilleter et s’imprégner de cette organisation de la suite écrite des nombres. Ils peuvent ainsi la mettre spontanément en relation avec la suite orale et recourir au livre lorsqu’une difficulté se présente à eux pour cette mise en relation.
  • Que les élèves soient amenés à produire des albums de ce type
des albums compter
Des albums à compter

 Un album pour travailler :

  • les compléments à dix
  • les notions d'intérieur et d'extérieur (espace)
  • le codage des personnages
  • la structuration dans le temps à partir d'une image fixe

 De l'escargot au mille-pattes, on voit défiler toute une galerie d'animaux ayant un nombre de pattes différent : le flamand rose, le lézard, le koala, l'étoile de mer…

slide64
1,2,3 petits chats qui savaient compter jusqu’à 3Auteur : Michel VAN ZEVERENEditions : Ecole des loisirs - Pastel

Il était une fois une maman qui avait 1, 2, 3 petits chats qui savaient compter jusqu’à 3. Avant d’aller dormir, ils prenaient leur bain dans 1, 2, 3 petites bassines. Une pour chacun.

Mais les chaton ne se privent pas de faire remarquer à leur mère ses oublis : un canard, un seau, un ballon, une cuillère, une chaise… etc

Mais compter les bisous, ça ils ne savent pas !... Car il y en a beaucoup…

Y en a-t-il autant que d’étoile dans le ciel ?

Un ouvrage à compter qui peut être présenté de plusieurs façons (lecture du texte puis recherche dans l'image ou démarche inverse : chercher ce qui manque puis vérification par le texte) pour travailler : dénombrement, bijection, recherche du manque pour compléter une collection, les grands nombres (beaucoup), comparaison de collection, partage…

la course auteur s b atrice tanaka michel gay editions ecole des loisirs
La courseAuteur(s) : Béatrice Tanaka - Michel GayEditions : Ecole des loisirs
  • Domaine du nombre :
    • Comptage de 1 à 5 : 2 compères, 3 coureurs, 4 fuyards…
    • Décomptage : rappel en boucle
    • Ordinal : 1er, 2ème, 3ème…
  • Repérage dans L'ESPACE et le TEMPS
    • Ordre chronologique
    • Devant / derrière
  • Structure répétitive
    • Pourquoi courais-tu ?
    • Pourquoi courions-nous ?
    • Passage 1 à 5 puis retour décompte de 5 à 1 (travail en boucle)
  • La mesure, la taille
    • Taille croissante de poursuivants avec rupture de l’ordre avec le loup.
    • lapin, coyote, élan, loup, ours
r alisation d un album cod le petit poucet sur une id e petit bleu et petit jaune de l o lionni
Le petit poucet :

Les enfants :

Le papa bûcheron :

La maman bûcheronne:

L'ogre :

L'ogresse :

La maison de l'ogre :

Les arbres :

Les oiseaux :

Les cailloux :

Les miettes de pain :

Réalisation d’un album codé : le petit poucetsur une idée "Petit-Bleu et Petit-Jaune" de Léo Lionni,
les types d activites auxquelles il est important de penser
LES TYPES D’ACTIVITES auxquelles il est important de penser

DOMAINE NUMERIQUE

1°) Activités pour apprendre à connaître la suite des mots-nombres.

2°) Activités pour apprendre à dénombrer une collection.

3°) Activités pour apprendre à reconnaître les écritures chiffrées et connaître leur succession.

4°) Activités pour apprendre à comparer deux collections (en les mettant en correspondance ou en utilisant les nombres).

5°) Activités où il s’agit de reconnaître une quantité donnée de différentes manières puis de construire une collection ayant le même nombre d’éléments.

6°) Activités où il s’agit de reconnaître une quantité puis de déplacer un jeton sur une piste.

7°) Activités de distribution et de partage.

8°) Activités pour se rendre compte que les nombres peuvent servir à anticiper un résultat (situations additives, situations soustractives...).

9°) Activités pour apprendre à écrire les chiffres.

slide69
STRUCTURATION DE L’ESPACE

1°) Activités pour apprendre à effectuer des repérages dans l’espace réel (situer des « objets » par rapport à soi, se situer par rapport à des « objets », situer des « objets » les uns par rapport aux autres, se repérer quand on se déplace...).

2°) Activités où on lit et on élabore des représentations de l’espace.

3°) Activités pour apprendre à reconnaître, manipuler et représenter des formes.

STRUCTURATION DU TEMPS

1°) Activités concernant la chronologie.

2°) Activités concernant les durées.

slide70
LA MESURE

1°) Approche de la notion de longueurs (comparaisons directes, comparaisons indirectes et éventuellement mesurage...).

2°) Approche de la notion de masse (comparaisons directes et éventuellement comparaisons indirectes).

3°) Activités qui serviront plus tard à mieux comprendre la notion d’aire (construction de formes différentes à l’aide de mêmes pièces de mosaïque, construction de formes identiques à l’aide de pièces de mosaïque différentes...).

4°) Approche de la notion de capacité (comparaisons et éventuellement mesurage en utilisant un verre étalon...)

slide71
ACTIVITES LOGIQUES POSSIBLES EN MATERNELLE
  • SUITES
  • ALGORITHMIQUES
  • MISES EN RELATION
  • DIVERSES
  • TRIS ET CLASSIFICATIONS
  • RANGEMENTS
  • JEUX DE STRATEGIE
  • COMPARAISONS
slide72
ACTIVITES DIVERSES :
  • sériations
  • enchaînements d’actions dans un certain ordre
  • représenter
  • désignations, marquages,
  • codages, décodages, ...
et maintenant travail de groupe pour changer et se donner des pistes de situation
Et maintenant : travail de groupe pour échanger et se donner des pistes de situation

A partir d’un matériel, d’un support,….essayer de construire une situation qui serait un problème pour chercher… En spécifiant :

  • Niveau concerné :
  • Objectif :
  • But à atteindre :
  • Matériel :
  • Dispositif :
  • La tâche :
  • Déroulement : les différentes phases (Présentation et description du matériel, Action, Formulation : Mise en mots des procédures utilisées, Validation du but à atteindre, institutionnalisation)
  • Stratégies attendues :
des documents retrouver sur internet avec des id es concr tes de situations
Des documents à retrouver sur internet(avec des idées concrètes de situations) :
  • Développement de la pensée logique et résolution de problèmes en maternelle

http://www.ac-grenoble.fr/ien.bourgoin3/spip.php?rubrique31

  • Découvrir le monde avec les mathématiques

http://www.crdp-strasbourg.fr/cddp68/maternelle/decmonde/index.htm

  • Activités rituelles et fonctionnelles à partir de comptines et albums à compter :

http://www.crdp-strasbourg.fr/cddp68/maternelle/projcompt/

  • Des comptines numériques

- http://www.crdp-strasbourg.fr/cddp68/maternelle/comptn00.htm

- http://pagesperso-orange.fr/jean-luc.bregeon/Page%203-2.htm

le chamelier
Le chamelier

Afin d’aider les trois fils à faire le partage, vous devrez leur prêter un chameau (ce qui portera le nombre de chameau à 18).

Le premier fils peut alors recevoir la moitié du troupeau soit 9 chameaux.

Le deuxième fils peut alors recevoir le tiers du troupeau soit 6 chameaux.

Le dernier fils peut alors recevoir le neuvième du troupeau soit 2 chameaux.

Ce qui fait : 9 + 6 + 2 = 17

Le testament est respecté et le sage récupère le chameau qui avait prêté !

des sommes un peu longues
Des sommes un peu longues …

Pour faire la somme des nombres de 1 à 1000, en moins de 5 minutes… il faut trouver une stratégie qui permette de ne pas avoir à effectuer des additions nombreuses ou compliquées.

Alors …

1, 2, 3, 4, 5…….500,…….995, 996, 997, 998, 999, 1000

(499 x 1000) +1000 + 500 = 500 500