nanomaterials approaches to innovation l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Nanomaterials Approaches to Innovation PowerPoint Presentation
Download Presentation
Nanomaterials Approaches to Innovation

Loading in 2 Seconds...

play fullscreen
1 / 26

Nanomaterials Approaches to Innovation - PowerPoint PPT Presentation


  • 346 Views
  • Uploaded on

Nanomaterials Approaches to Innovation Francesco Stellacci Department of Materials Science and Engineering, MIT frstella@mit.edu Acknowledgements Graduate Students Osman Bakr (Harvard) Jeffrey Kuna Ozge Akbulut Jin Young Kim (with Prof. Ross) Hyewon Kim Randy Carney

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Nanomaterials Approaches to Innovation' - bernad


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
nanomaterials approaches to innovation

Nanomaterials Approaches to Innovation

Francesco Stellacci

Department of Materials Science and Engineering, MIT

frstella@mit.edu

acknowledgements
Acknowledgements

Graduate Students

Osman Bakr (Harvard)

Jeffrey Kuna

Ozge Akbulut

Jin Young Kim (with Prof. Ross)

Hyewon Kim

Randy Carney

Eun Seoun Kim (with Prof. Van Vliet)

Huijuan Zhang (with Prof. Thong, NUS)

Post-Docs

Ying Yu

Kislon Voitchovsky

Jin-Mi Jung

Benjamin Wunsch

Anirbal Gosh

Javier Reguera

Xiang Liu

Yun Tan

Karen Stewart (with Prof. Van Vliet)

Alumni:

Graduate Students

Robert J. Barsotti, Jr. (Arkema. Senior Sci.)

Gretchen A. DeVries (Patent Lawyer)

Alicia M. Jackson (US Senate, Intern)

A. Amy Yu (Samsung, senior scientist)

Suelin Chen (Weissleder group )

Sarah Thevenet (Mol. Stamping, Production Eng.)

Tan Mau Wu (Patent Lawyer )

Post-Docs

Markus Brunnbauer (Infineon, Senior Scientist)

Xiaogang “Bruno” Liu (NUS, Assistant Professor)

Brenda Long (U. Birgh., post doc)

Andrea Centrone (MIT, post doc)

Kazuya Nakata (NIAST, Japan, Assistant Professor)

Georg Heimel (Free U. Berlin, post doc)

Oktay Uzun (Dow Chemicals)

Cedric Dubois (Nestle’)

Ayush Verma (Novartis’)

Collaborators

David Nelson, Harvard

Ralph Weissleder, MGH

Molly Stevens, Imperial C.,

UK

Henry I. Smith, MIT

Maurizio Prato, Trieste

Enzo di Fabrizio, Catanzaro

Marcus Halik, Erlangen U.,

Germany

Anne Mayes, MIT

Sharon Glotzer, U. Mich

Joerg Lahan, U. Mich.

Nicola Marzari, MIT

Darrell Irvine, MIT

Krystyn Van Vliet, MIT

Robert Cohen, MIT

Carl Thompson, MIT

John Thong, NUS

Hee-Tae Jung, KAIST

Yann Astier,

U Lisbon, Portugal

Xiaogang Liu,

NUS, Singapore

Giulia Rusciano

(CNR, Italy)

Matthias Schneider

(BU/Munchen)

Alfredo Alexander-Katz

(MIT)

NSF: CAREER

NIH TPEN Program

Deshpande Center

CMSE-MRSEC DMR 02-13282

MARCO

3M Non Tenured Faculty Award

3M Innovation Award

DuPont Young Professor Award

Packard Foundation Award

Singapore MIT Alliance 2

MITEI, ENI

Tata Chemicals

the su pramolecular n ano ma terials g roup

20 mm

The Supramolecular NanoMaterials Group

Metal Nanoparticles

Nano Stamping

Supramolecular

Materials

Science

Jackson, Nat. Mat., 330, 2004;

Akthakul, Adv. Mat., 532, 2005

Jackson, JACS., 11135, 2006;

DeVries, Science, 358, 2007

Centrone, Small, 814, 2007,

Uzun, Chem. Comm.,196, 2008

Sigh, Glotzer, PRL, 226106, 2007,

Carney, JACS, 798, 2008

Hu, J. Phys. Chem C, 6279, 2008

DeVries, Adv. Mat. on line;

Nakata, Adv. Mat on line

Verma, Nat. Mat. 588, 2008

Centrone, PNAS, 9886, 2008

Yu, J. Scn. Prob. Micr. 24, 2009

Kuna, N. Mat., 837, 2009

NanoMaterials

Patterning

Yu, Nano Lett., 1061, 2005

Yu, JACS, 16774, 2005

Yu, J. Mat. Chem., 2868, 2006

Yu, Adv. Mat., 4338 2007

Thevenet, Adv. Mat., 4333, 2007

Akbulut, Nano Lett., 3493, 2007

Surfaces

Lithography

Nanotubes & Nanowires

Interfaces and SAMs

Halik. Nature,963, 2004

Dubois, J. Phys. Chem. C 7431, 2008

Long, B.; J. Exp. Nanosci., 53, 2008

Voitchkovsky.; Nat. Nano., in review

Barsotti, Langmuir,, 4795, 2004

Barsotti, J. Mat. Chem., 962, 2006

Zhang H., Small, accepted

Long, Chem Comm. 2788, 2008

Liu, Yuan, Kong, Stellacci Nat. Nano. 332, 2008

slide7

Company

2006:

Molecular Stamping founded by F. Stellacci (MIT) and F. della Porta (Silicon Valley). Exclusive license from MIT for Supramolecular Nanostamping (SuNS) enabling a drastic reduction in the cost of microarray fabrication and higher platform flexibility. Molecular Stamping has two facilities in Italy: the Operations unit in Trento and the Service Analysis lab located in Lodi (Milan)

2007:

12 scientists hired, new patents applied, a production method developed

2008:

installed capacity 2500 arrays/year and volume ramp started

Molecular Stamping

7

slide8

Shareholders

  • TWOF, Holding http://www.twof.com
    • Innogest (VC, Italy)
    • Transfiduciare (Private Banking, Switzerland)
    • Private (mostly Private Bankers, Switzerland)
    • MIT
  • FBK, Fondazione Bruno Kessler (Research institute)
  • http://www.fbk.eu
  • PTP, Parco Tecnologico Padano (Incubator)
  • http://www.tecnoparco.org

Molecular Stamping

8

technology
Technology

A DNA microarray is a collection of microscopic spots containing single stranded DNA attached to a solid surface such as glass, and is typically used to simultaneously monitor a large amount of genomic material.

Molecular Stamping

9

technology10
The market is currently dominated by suppliers of in situ synthesized microarrays, each one using a different manufacturing technique:

Photolithography /masks (Affymetrix)

Maskless Photolithography (Roche/Nimblegen)

Ink-jet printing (Agilent)

BeadArray technology (Illumina)

MicroElectrodes (Combimatrix)

At MS we leverage the naturally occurring biochemical synthesis of DNA

to generate DNA arrays at low cost and with high degree of flexibility.

Technology

Molecular Stamping

10

slide11

Technical Advantages

  • SIMPLE: small number of process steps.
  • FLEXIBLE: SuNSTM process does not pose practical limits on the length and direction of DNA probes.
  • VERSATILE: stamping can be used to print biological molecules other than DNA: RNA, antibodies, proteins, small molecules.
  • INEXPENSIVE: use of naturally occurring DNA replication dramatically reduce fabrication costs.

Molecular Stamping

slide12

Replication

1

TEMPLATE MICROARRAY

TEMPLATE MICROARRAY

Technology

  • Current manufacturing process is composed by 3 general steps:
    • Replication:
    • Single-stranded DNA (ssDNA) probes on the template microarray are enzymatically replicated, forming double-stranded DNA (dsDNA); these new strands contain groups that can form strong bonds with a new surface.

Molecular Stamping

12

slide13

TEMPLATE MICROARRAY

Stamping

2

TEMPLATE MICROARRAY

MS MICROARRAY

Technology

  • 2. Stamping:
  • The template microarray is brought into conformal contact with the microarray surface, allowing covalent bonds to form between the newly synthesized DNA and the new surface.

Molecular Stamping

13

slide14

TEMPLATE MICROARRAY

TEMPLATE MICROARRAY

Separation

MS MICROARRAY

MS MICROARRAY

Technology

  • 3. Separation:
  • The two surfaces are separated; the “stamped” surface is now a Molecular
  • Stamping Microarray.

3

Molecular Stamping

14

slide15

Replication

1

TEMPLATE MICROARRAY

TEMPLATE MICROARRAY

3

Separation

MS MICROARRAY

MS MICROARRAY

Technology

  • Process cycle:

TEMPLATE MICROARRAY

2

Stamping

Molecular Stamping

15

technology16
Technology

M

M

S

S

The microarray obtained is the mirror image of the template

TEMPLATE

MS MICROARRAY

Molecular Stamping

16

operations
Operations

Molecular Stamping

120sqm Clean room

class 1000

Chemical Lab

Bio Lab

Service Lab

17

clean room
Clean Room

Clean room north view

Clean room south view

Molecular Stamping

product 1
Product-1

Custom Microarray via SuNS TM

Taking advantage of the inherent ability of DNA to self-replicate,

a custom microarray is generated from a "template" microarray

Through a Replication contact-dehybridization cycle.

Molecular Stamping

services
Services

Molecular Stamping

Array spotting service

RNA-DNA quality control

Microarray analysis for

both gene expression

and genotyping

20

slide21

Contact

info@twof.com

Giovanni de Ceglia

Email: gdeceglia@twof.com

Giorgia Faes

Email: gfaes@twof.com

Molecular Stamping s.r.l

Via Sommarive, 18 - Povo (TN), 38050 – Italy

http://www.molecularstamping.com/

Molecular Stamping

the su pramolecular n ano ma terials g roup22

20 mm

The Supramolecular NanoMaterials Group

Metal Nanoparticles

Nano Stamping

Supramolecular

Materials

Science

Jackson, Nat. Mat., 330, 2004;

Akthakul, Adv. Mat., 532, 2005

Jackson, JACS., 11135, 2006;

DeVries, Science, 358, 2007

Centrone, Small, 814, 2007,

Uzun, Chem. Comm.,196, 2008

Sigh, Glotzer, PRL, 226106, 2007,

Carney, JACS, 798, 2008

Hu, J. Phys. Chem C, 6279, 2008

DeVries, Adv. Mat. on line;

Nakata, Adv. Mat on line

Verma, Nat. Mat. 588, 2008

Centrone, PNAS, 9886, 2008

Yu, J. Scn. Prob. Micr. 24, 2009

Kuna, N. Mat., 837, 2009

NanoMaterials

Patterning

Yu, Nano Lett., 1061, 2005

Yu, JACS, 16774, 2005

Yu, J. Mat. Chem., 2868, 2006

Yu, Adv. Mat., 4338 2007

Thevenet, Adv. Mat., 4333, 2007

Akbulut, Nano Lett., 3493, 2007

Surfaces

Lithography

Nanotubes & Nanowires

Interfaces and SAMs

Halik. Nature,963, 2004

Dubois, J. Phys. Chem. C 7431, 2008

Long, B.; J. Exp. Nanosci., 53, 2008

Voitchkovsky.; Nat. Nano., in review

Barsotti, Langmuir,, 4795, 2004

Barsotti, J. Mat. Chem., 962, 2006

Zhang H., Small, accepted

Long, Chem Comm. 2788, 2008

Liu, Yuan, Kong, Stellacci Nat. Nano. 332, 2008

superhydrophilic paper

20 mm

500 nm

27 cm

50 mm

2 mm

Superhydrophilic Paper

potassium sulfate

potassium persulfate

manganese sulfate monohydrate

J. Yuan, K. Laubernds, J. Villegas, S. Gomez, S. L. Suib,

Adv. Mater. 16, 1729 (2004)

superhydrophobic paper

A

B

A/R: 172O/172O

2 mm

Contact angle

:

Contact angles (o)

Contact angle hysteresis

:

10 mm

3 nm

Contact angle hysteresis (o)

Number of surface coatings

C

C

O

Mn

Intensity (a.u.)

Mn

D

Cu

Mn

Si

Cu

30 nm

E

0

2

4

6

8

10

Energy (eV)

Superhydrophobic Paper

Silane

coating

(230 oC)

After oven baking at 2300 C in the presence of

polydimethylsiloxane (PDMS) the paper becomes

superhydrophobic

Heating

(390 oC)

Contact Angle 1720

capillarity superhydrophobicity

A

Weight gain (%)

B

C

Toluene

Gasoline

Motor oil

Cyclohexane

Petroleum ether

1,2-Dichlorobenzene

Sunoco gasoline

(regular 87) labeled

with Oil Blue 35

Capillarity + Superhydrophobicity = …

+

= Selective Super-Absorbance

oil uptake capacity
Oil-Uptake Capacity

Yuan, Liu, Akbulut, Suib, Kong, Stellacci, Nature Nano. 332, 2008