90 likes | 201 Views
This paper discusses the advantages of tight contact spacing in neuromodulation, focusing on a computational model that avoids stimulation gaps. The model examines contact distance (mV/cm²) and how it maps changes in potential across nerves, indicating levels of depolarization and hyperpolarization. Any depolarization exceeding the threshold prompts neuronal firing. Based on the foundational work of Rattay (1989), our findings suggest tighter spacing may enhance efficacy in nerve stimulation applications, optimizing therapeutic outcomes in neuromodulation.
E N D
Las Vegas, NV4-Dec-10 The Benefits of Tight Contact Spacing: Computational Model on Avoiding Stimulation Gaps Emarit Ranu MSEE MSBS, Ewan Gillespie MBA, Kerry Bradley MS Boston Scientific NeuromodulationValencia, CAUSA
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Tight Contact Spacing: Rolling Cathodes Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Wide Contact Spacing: Rolling Cathodes Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
The Benefits of Tight Contact Spacing WideDiscontinuities TightContinuous Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.