1 / 15

GERDA Neutrinoless Double Beta Decay

GERDA Neutrinoless Double Beta Decay. Ludwig Niedermeier, Universität Tübingen NPAE Kiev, 1.6.2006. _. _. _.  r.  r.  r. _.  = . Neutrinoless Double Beta Decay. 2  2  decay. 2  0  decay. n. p. n. p. W -. W -. e -. e -. e -.  l. e -. W -. W -. n. p.

baylee
Download Presentation

GERDA Neutrinoless Double Beta Decay

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GERDA Neutrinoless Double Beta Decay Ludwig Niedermeier, Universität Tübingen NPAE Kiev, 1.6.2006

  2. _ _ _ r r r _  =  Neutrinoless Double Beta Decay 22 decay 20 decay n p n p W- W- e- e- e- l e- W- W- n p n p 20 conditions: Majorana particle r↔l helicity flip~(1-(v/c)2) for m>0 E (e–+e–) in keV

  3. From Decay to Neutrino Mass • Exp. determination of 20 half life with 76Ge=> Effective neutrino mass: determination / limit N Number of Ge atomsS 20 signalB Background signalsb Bgr. rate (kg s keV)-1m Ge massM Ge mol. weighta 76Ge enrichment Detection efficiencyE Energy binningt Measurement time

  4. Impact on Neutrino Physics GERDA I Hd-Moscow GERDA II GERDA III (???) Current status: m²12 ≈ 8·10-5 eV² (solar ) m²23 ≈ 2·10-3 eV² (atm. )normal hierarchy or inverse hierarchy ? (inverse) (normal) 3 1 m12 2 m23 m23 2 m in eV m12 3 1 ↔mee absolute mass scale

  5. The Heidelberg-Moscow-Experiment 76Ge Best fit:T2β0= 1.2·1025 y [Klapdor-K. et al, Phys.Lett. B586(2004)198] A.M. Bakalyarov, A. Ya. Balysh, S. T. Belyaev, V. I. Lebedev, S. V. Zhukov (Kurchatov Institute, Moscow): T1/2(2β0ν) >1.55 · 1025 y (90% C.L.) [Письма в ЭЧАЯ. 2005. T.2, No.2(125). C.21-28]

  6. Gerda – Detector Overview Gran Sasso laboratory3600 mwe Water shielding Cherenkov muon veto LN2 or LAr shield 76Ge crystals

  7. Gerda - Motivation – Check of Hd-Moscow publications– Further improvement of mee sensitivity Reduce background by ultra-pure shielding material LAr or LN2surrounding Ge crystals 0.17→~10-3(kg·y·keV)-1 Hd-Moscow GERDA

  8. 1.2 · 1025 Gerda – Development Phase I 5 crystals of HD-Moscow, 3 of IGEX m76Ge = 18kg t ≤ 1a Background requirement: 10-2 (keV kg y)-1 Phase II Additional crystal insertion m76Ge=37.5kg (a>86%) t = 3a Background requirement: 10-3 (keV kg y)-1 Phase III (?) World-wide collaboration (contact with MAJORANA) m76Ge ~ 500kg Background requirement: 10-4 (keV kg y)-1 Results!

  9. Gerda – Background (97% veto)(30d exposure) anti-coincidencepulse-shapedecay chain coinci- dence for 68Ge anti-coincidence with crystal segmentation Required background level (phase I): 10-2 (keV kg y)-1(phase II): 10-3 (keV kg y)-1 Compare Hd-Moscow 0.17 (keV kg y)-1

  10. Gerda – Ge Crystals Phase II – ≈20 crystals 1 crystal – 18 segments

  11. Gerda Muon Veto – A Water Cherenkov Detector plastic scintillator photomultiplier cryo tank + 3.wall Ge crystals water tank reflector VM2000 ‚lower pillbox‘

  12. The LArGe Facility as Test Bench Pb shielding Cu shielding Cryostat (1.3m³) Test bench at LNGS for refurbished Ge detectors and Liquid Argon solution LAr LN2 better  shield better n shieldscintillation veto less scattered n no 39Ar contam.TEST! easier handling

  13. Gerda – Schedule Construction Phase IPhase II Phase III • Ge refurbishment/testing in LArGe • Start of construction in fall 2006 • Construction of cryo tank (→ stainless steel) • Construction of water tank • Insertion of muon veto • Insertion of first Ge crystals in Gerda (Phase I) • Towards Phase II: Insertion of more crystals (37.5kg of enriched 76Ge already produced) • Final detector filling • Data taking (3 years) • Phase III (?)

  14. Gerda – Conclusion • Test of the Klapdor-Kleingrothaus et al. publication result • Aim to mee determination • Phase I: mee → 0.3 eV • Phase II: mee → 0.1 eV • Phase III could check inverse hierarchy

  15. Gerda – Collaboration • INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy • Joint Institute for Nuclear Research, Dubna, Russia • Max-Planck-Institut für Kernphysik, Heidelberg, Germany • Jagellonian University, Krakow, Poland • Università di Milano Bicocca e INFN Milano, Milano, Italy • Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia • Institute for Theoretical and Experimental Physics, Moscow, Russia • Russian Research Center Kurchatov Institute, Moscow, Russia • Max-Planck-Institut für Physik, München, Germany • Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy • Physikalisches Institut, Universität Tübingen, Germany • EC-JRC-IRMM, Geel, Belgium

More Related