1 / 56

Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

ULTRAVIOLET-VISIBLE-NEAR INFRARED (UV-VIS-NIR) SPECTROSCOPY ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR) OF ZEOLITES. Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven Kasteelpark Arenberg 23, 3001 Leuven Belgium

baris
Download Presentation

Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ULTRAVIOLET-VISIBLE-NEAR INFRARED • (UV-VIS-NIR) SPECTROSCOPY • ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR) • OF ZEOLITES Robert A. SCHOONHEYDT Center for Surface Chemistry and Catalysis K.U. Leuven Kasteelpark Arenberg 23, 3001 Leuven Belgium Robert.schoonheydt@biw.kuleuven.ac.be

  2. OUTLINE • 1. Principles of UV-VIS-NIR • - physical basis • - methodology • 2. In-situ UV-VIS • 3. Optical and fluorescence microscopies • 4. Principles of EPR • - physical basis • - methodology • 5. In-situ EPR • 6. Pulse EPR • 7. Coordination of transition metal ions (TMI) • 8. Conclusions

  3. UV-VIS-NIR

  4. * Antibonding Antibonding π* π π* n π* n  *   * Nonbonding π π Bonding  Bonding What do we measure ? Molecules: unsaturated   * and n  * transitions Energy level diagramme

  5. Transitions Metal Ions d – d transitions Ligand- to Metal Charge Transfer (LMCT)

  6. Transitions Metal Ions d – d transitions Metal - to Ligand Charge Transfer (MLCT) example: [Cr(benzene)2]+

  7. x I0 J0 I J + J x I + I J UV - VIS - NIR: Methodology Powdered samples  Diffuse Reflectance Spectroscopy (DRS) Principle

  8. Ideal Case: Kubelka – Munck formula scattering intensity from infinitely thick sample scattering intensity from infinitely thick white standard R∞ = K : Kubelka-Munck absorption coefficient S : Kubelka-Munck scattering coefficient

  9. Conditions for use of K M-formula • diffuse monochromatic irradiation • isotropic scattering • infinite sample thickness • low concentration of absorbing centers • uniform distribution of absorbing centers • absence of fluorescence

  10. UV – VIS – NIR: instrumentation • Every compagny has a UV-VIS-NIR spectrophotometer with • two sources ( Nerst glower, D2 lamp) and two detectors (PbS, PM). • Integration sphere for DRS • White standards: MgO, BaSO4, HALON.

  11. hn Gas inlet • Gas outlet IN – SITU UV-VIS-NIR Praying Mantis Optical fibre technology Most sensitive region: VISIBLE  low background  sensitive detection: PM

  12. IN – SITU UV-VIS-NIR Examples: d  d (pseudo)tetrahedral Co2+ O  Cr6+ charge transfer (chromate, dichromate) O  Cu2+ bis(µ-oxo)dicopper

  13. O O O O - 1 +1 - 1 Al P Al O O O O O O O O O O Microporous crystalline metal-containing Aluminiumphosphates:isomorphous substitution Isomorphous + Co 2 substitution O O O O - 2 +1 - 1 Co P Al O O AlPO - 5 4 AFI

  14. CoAPO-5: in situ synthesis Absorbance Wavelength (nm) Synthesis time

  15. CoAPO-5 synthesis: spectra at RT

  16. Chromate reduction with CO in zeolite Y

  17. bis( µ-oxo )dicopper in ZSM-5

  18. OPTICAL and FLUORESCENCE MICROSCOPIES

  19. Intergrowth structure of ZSM-5 Accessibility?

  20. Applications Oligomerization of furfurylalcohol in ZSM-5 and mordenite

  21. Applications Oligomerization of styrene in ZSM-5

  22. oligomerization of styrene: absorption spectra

  23. Decomposition of template molecules in CrAPO-5

  24. Decomposition of template molecules and intergrowth structures CrAPO-5 SAPO-34 SAPO-5 ZSM-5

  25. ELECTRON PARAMAGNETIC RESONANCE magnetic moment of the unpaired elelctron = dimensionless spin angular momentum vector of the electron S2 = s(s+1) s = ½ SZ =ms ms = 1/2, -1/2 = Borhmagneton g, spectroscopic splitting factor = 2.0023 ħ = h/2π γ = gyromagnetic ratio

  26. E ms = 1/2 E = gβB0 ms = - 1/2 B0 ZEEMAN INTERACTION EZ = -µZB0 = gβB0ms ms = ½: 1/2g βB0 ms = -½: -1/2g βB0 Resonance condition: hν = E = gβB0

  27. EPR: powder spectra • All possible orientations of the spins • Each orientation has its own resonance condition • Spectra are superpositions of all those individual spectra isotropic axially symmetric orthorhombic

  28. EPR: Measurement of g values • measurement at constant frequency and varying magnetic field Band name band range, GHz L 1.5 S 2.6-4 C 4-6 X 8.2-12.4 K 18-26.5 Q 33-50 V 50-75 W 75-100 • g = = 7,145x10-9 ν/B0 to be measured with gaussmeter to be read from microwave bridge • reference: DPPH gr = 2,0036 (diphenylpicrylhydrazine)

  29. EPR: METHODOLOGIES Resonance cavities

  30. EPR: Spin Hamiltonian • Hyperfine interaction: unpaired electron-nuclear spin: I mI = I, I - 1,…..,- I • each energy level of the electron is split according to mI • selection rule for EPR: ms = 1: mI = 0 • S > ½  more than one unpaired electron: ZERO FIELD SPLITTING • QUADRUPOLAR INTERACTION: nuclear spins with I > 1/2 • SPIN HAMILTONIAN

  31. EPR: Quantitative

  32. In situ EPR Set-up

  33. FeAPO-5 Example: calcination of FeAPO-5

  34. PULSE EPR D. Goldfarb, Weizmann Institute, Israel ESEEM: electron spin echo envelope modulation ENDOR: electron nuclear double resonance Examples: 1. Interaction of Cu2+ with Al nuclei in the zeolite lattice 2. Copper –histidine complexes in supercages of zeolite Y.

  35. Copper – histidine complexes in supercages of zeolite Y

  36. TRANSITION METAL IONS IN ZEOLITES

  37. Coordination to lattice oxygens • Characteristics • Low coordination number • Free coordination sites • Low symmetry • Examples: Cu2+, Co2+

  38. Cu2+: DRS + EPR ZSM-5 Zeolite A

  39. Cu2+: Summary of EPR parameters and d – d transitions

  40. Coordination of Co2+ and Cu2+ to sixrings: LF or AOM Fixed oxygens: Cu2+/Co2+ in the center of the six- ring on trigonal axis Cu2+: doubly degenerate ground-state  Jahn-Teller distorsion Co2+: off-axial displacement by 0.078 – 0.104nm

  41. Coordination to six-rings in LTA and FAU Cu2+

  42. Cu2+:orbital interactions between d(Cu2+) and p(0)

  43. Cu2+in ZSM-5: α sites with zero, one and two Al’s

  44. Cu2+in ZSM-5: β sites with zero, one and two Al’s

  45. Cu2+in ZSM-5: γ sites with zero, one and two Al’s 0 1 2 3 binding energy g-factors -698 2.25 2.06 2.06 -680 2.26 2.07 2.05 -662 2.27 2.07 2.06 4 5 6 -656 2.29 2.07 2.06 -523 2.27 2.06 2.06 -505 2.28 2.08 2.05

  46. Cu2+in ZSM-5: δ sites with zero, one and two Al’s

  47. ν (cm-1) = 30,000[χopt(0)-χopt(Cu2+)] cm-1/1000 Cu2+in Zeolite: O  Cu2+ charge transfer

  48. DRS spectrum of Co2+in Zeolite A

  49. DRS spectrum of Co2+in Zeolite Y and its decomposition

  50. DRS spectrum of Co2+in LTA and FAU:visible region

More Related