math10001 mathematical workshop n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
MATH10001 Mathematical Workshop PowerPoint Presentation
Download Presentation
MATH10001 Mathematical Workshop

Loading in 2 Seconds...

play fullscreen
1 / 14

MATH10001 Mathematical Workshop - PowerPoint PPT Presentation


  • 124 Views
  • Uploaded on

MATH10001 Mathematical Workshop. Mathematical Modelling and Problem Solving. Traditional view of maths?. Maths is useless The only jobs maths can be used for are accountancy and teaching Maths has no link with the real world. The truth is that mathematicians have changed the world,

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'MATH10001 Mathematical Workshop' - baird


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
math10001 mathematical workshop

MATH10001 Mathematical Workshop

Mathematical Modelling and Problem Solving

slide2

Traditional view of maths?

  • Maths is useless
  • The only jobs maths can be used for are accountancy and teaching
  • Maths has no link with the real world
slide3

The truth is that mathematicians have changed the world,

Radio, digital revolution

Engineering

Computers

Security

Health

slide4

TelecommunicationsFourier

  • Fourier Transforms
  • Joseph Fourier, 1768-1830
  • Mobile phones, digital radios, MP3 players etc. all use these ideas.
        • , MP3 players etc all use the sameideas
slide5

Internet shopping

  • Internet transfer protocols based on mathematics
  • Credit cards and online shopping
    • Modern encryptionalgorithms like RSAuse prime number theorems
slide6

Scanners

  • Security screening at the airport
  • MRI scanners in hospitals
slide7

Mathematical modelling in engineering:

eg. Finite element modelling to reduce vibration

Divide car into small

cuboids/tetrahedra.

Treat it a bit like masses

and springs in a network.

Vibrations modelled using eigenvalues of matrices.

slide8

Traffic Management

  • Variable speed signs
    • “shock waves”
  • Many models of traffic flow
    • Road design
    • Traffic control
    • Better throughput
    • Better safety
slide9

modelling

Mathematical

Model

Real World

problem

solving

Modelling Cycle

testing

Explanations

&Predictions

Solution

interpretation

steps in the modelling cycle
Steps in the modelling cycle
  • Identify the problem
  • Define the variables and parameters
    • Variables are quantities that can change in a problem
    • Parameters are quantities that remain constant
  • Make assumptions
  • Write down a model - relationships between variables
  • Solve the model
  • Test the solution against the real life problem
  • Refine the model
example modelling the growth of bacteria
Example – modelling the growth of bacteria

We start with 500 bacteria in a Petri dish. After one day we have 525 bacteria, after two days we have 551 bacteria.

  • The problem is to find a formula for the number of bacteria after n days.
  • Variables include the population, growth rate, time, temperature, amount of food, amount of space left in dish etc. Parameters include initial population, size of dish, initial amount of food.
  • To simplify the problem we make certain assumptions – ignore the amount of food, temperature and space in dish and assume that the growth rate is constant.
slide12

4. Define the model: first introduce some notation:

We write down the relationship

We have

Assuming a growth rate of 0.05 (from our observations) we get

slide13

6. Test the solution: we test our solution against observations.

We can see that the model works well at the start but after 6 days the model is not accurately predicting the population. This tells us that we need to modify our model.

slide14

7. The growth rate appears to be decreasing over time. This

could be due to a change in food available or room to grow. We chose to ignore those variables in the original model. As the growth rate is changing we could replace our constant rate by one which is a function of n.

Why do we need mathematical models? Why don’t we simply make lots of observations?