Download
using congruent triangles n.
Skip this Video
Loading SlideShow in 5 Seconds..
Using Congruent Triangles PowerPoint Presentation
Download Presentation
Using Congruent Triangles

Using Congruent Triangles

147 Views Download Presentation
Download Presentation

Using Congruent Triangles

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Using Congruent Triangles Ch 4 Lesson 5

  2. CPCTC • Corresponding parts of congruent triangles are congruent (CPCTC): Once two triangles are proven to be congruent than all corresponding parts of the two triangles are congruent

  3. Example #1 • Given AB II CD, BC II DA • Prove AB ≅ CD • Copy the diagram with signs to show parallel sides

  4. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  5. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  6. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  7. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  8. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ABC ≅ BDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) Corresponding Sides of congruent triangles are congruent Example #1: Prove AB ≅ CD

  9. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ΔABC ≅ ΔBDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) CPCTC Example #1: Prove AB ≅ CD

  10. Statement AB II CD BC II DA <1 ≅ <4 <2 ≅ <3 BD ≅ BD ΔABC ≅ ΔBDC AB ≅ CD Reason Given Given Alternating Angles Alternating Angles Reflexive prop. Def of ≅ triangles (ASA) CPCTC Example #1: Prove AB ≅ CD

  11. Example #2 Given: A is midpoint of MT A is midpoint of SR Prove: MS II TR

  12. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  13. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  14. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  15. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  16. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  17. Statement A is midpoint of MT A is midpoint of SR MA ≅ AT & SA ≅ AR <SAM ≅ <RAT Δ SAM ≅ Δ RAT <M≅ <T & <S≅ <R MS II TR Reason Given Given Def of ≅ Vertical <s SAS Theorem CPCTC (alternating <s) CPCTC (alternating <s) Given: A is midpoint of MT A is midpoint of SRProve: MS II TR

  18. Example #3 • Given: <1≅ <2 & <3 ≅ <4 • Prove ΔBCE ≅ ΔDCE

  19. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  20. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  21. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  22. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  23. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  24. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  25. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  26. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  27. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE

  28. Statement <1≅ <2 & <3 ≅ <4 CA ≅CA ΔACD ≅ ΔABC CB ≅ CB In ΔDEC & ΔBEC <1 ≅<2 CD ≅CB CE ≅CE ΔBCE ≅ ΔDCE Reason Given Reflexive ASA CPCTC Given CPCTC Reflexive SAS Given: <1≅ <2 & <3 ≅ <4Prove: ΔBCE ≅ ΔDCE