1 / 52

Energy limit of Runaway electron and possible IR measurement for confined runaways in HT-7

HT-7 上红外测量芯部逃逸的调研. Energy limit of Runaway electron and possible IR measurement for confined runaways in HT-7. Z.Y.Chen, B.N.Wan, S.Y.Lin, W.Kong, Y.H.Ding, H.Lin and HT-7 Team czy1003@ipp.ac.cn. Motivation:

austin-york
Download Presentation

Energy limit of Runaway electron and possible IR measurement for confined runaways in HT-7

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HT-7上红外测量芯部逃逸的调研 Energy limit of Runaway electron and possible IR measurement for confined runaways in HT-7 Z.Y.Chen, B.N.Wan, S.Y.Lin, W.Kong, Y.H.Ding, H.Lin and HT-7 Team czy1003@ipp.ac.cn

  2. Motivation: • 逃逸电子能量很高,可达数十个MeV,高通量的逃逸电子会严重破坏装置第一壁材料。研究逃逸电子的产生,约束以及损失行为,探索有效的抑制逃逸电子的手段,是下一代装置稳定运行的基础之一。 • 研究光中子产额的基础之一:对不同的材料,(gamma,n)光中子反应对gamma有能量阈值要求。 • 芯部磁涨落的试探粒子:高能逃逸电子受本底等离子体的碰撞,静电涨落的输运可以忽略,其输运主要由磁涨落决定。磁涨落通常只有10-4,很难直接测量。通过芯部逃逸电子输运行为可以得到等离子体芯部的磁涨落水平,为反常输运提供一定的研究基础。

  3. What can we do in HT-7 ? • 逃逸电子动力学(准稳态,LHW驱动的快电子的影响),data base for ITER • 探索抑制逃逸的手段(弹丸,喷气,LHW,外部磁扰动) • ITPA,破裂迁移(data base for ITER) • 测量芯部磁涨落水平,与磁涨落相关的输运 • 逃逸电子对第一壁材料的腐蚀

  4. What is Runaway? 逃逸电子: 一部分速度大的热电子或者是快电子受到的碰撞阻力小于电场力时,就会不断的被加速到很高的能量,最后和本底等离子体解耦,不受本底等离子体的碰撞等的影响,它自身处于一个稳定的约束,约束时间通常是本底等离子体电子的几十倍。 The critical kinetic energy of fast electron to be runaways is =2.21*(2+Zeff)*ne/E (keV) For typical OH shot in HT-7: Ne=1.0, Zeff=3, Vloop=1.2V, Ip=120kA Wcrit=70keV

  5. 逃逸电子的能量平衡(Energy limit): • 电场加速 • 同步辐射减速 • 和磁场纹波之间的共振 • 逃逸电子自身的轨道漂移 • 一些不稳定性

  6. 电场加速 Pgain=Ee*c • 忽略辐射损失以及其它过程,我们可以简单的得到逃逸电子的最大能量: • 同步辐射减速 Pitch angle: 根据电场加速和辐射阻尼之间的能量平衡:Pgain=Pe For R=1.22m, Vl=1.5V, B=2T, theta=0.1, Wmax=39MeV

  7. pitch angle 0 0.05 0.1 0.15 0.2 Vl=1.0, Bt=2T 59.6 44.7 33.8 26.7 21.6 Vl=1.2, Bt=2T 62.4 47.1 36.2 28.7 23.5 Vl=1.5, Bt=2T 65.9 50.5 39.3 31.5 25.9 Vl=2.0, Bt=2T 70.9 55.3 43.8 35.4 29.3 Vl=2.0, Bt=1.7T 70.9 57.4 46.9 38.9 32.8 Wmax(MeV) with different pitch angle, Vl and Bt Wmax(MeV) 对环电压和纵场不敏感,对pitch角比较敏感。

  8. 和磁场纹波之间的共振 由于有限的纵磁线圈(N),纵场有一个波纹度,逃逸电子经过这个波纹场会受到调制,频率为 n是谐波阶数 如果电子的回旋运动和n次谐波共振,电子会被散射,增大pitch角,这个机制没有直接的能量损失,但是大的pitch角会增加辐射损失,从而影响能量极限,它取决于n和波纹大小。 共振作用随谐波次数的增加而减弱。估计HT-7上n=1,2的作用可能会存在,从而可以限制一些逃逸电子的能量:15MeV或者30MeV。 由于HT-7采用软磁材料减小了波纹度,是否有强的共振作用有待下轮实验证实。

  9. 逃逸电子自身的轨道漂移影响 逃逸电子要约束在等离子体中,轨道漂移要小于等离子体小半径,这就对逃逸电子的能量有限制 取纵场为2Tesla,边界安全因子qa为4,小半径a=0.27m:得到逃逸电子可以约束在HT-7中的最大能量40.5MeV

  10. 一些不稳定性 Maxwellian分布的高能成分的自由能可以通过共振和等离子体振荡。当达到阈值能量,就会发生不稳定性。这些不稳定性会影响逃逸电子的能量极限以及约束时间。 能量范围:0.1~1MeV 更高能量范围也存在 >20MeV n=0: Cerenkov resonance df(v)/dv>0: energy exchange between the electrons and the wave. df(v)/dv>0: the wave damped. n<0: anomalous Doppler resonance. (FPAS,Parail-Pogutse instability) n<0: normal Doppler resonance. 由于垂直速度小,这个发生的可能性极小。

  11. 综合前面各个因素,HT-7上逃逸电子的极限能量 (Energy limit): • 电场加速 (1.7VS) Wmax=66MeV • 同步辐射减速 Wmax=39MeV • 和磁场纹波之间的共振 Wmax= 30MeV(n=1), 15MeV(n=2) • 逃逸电子的轨道漂移 Wmax=40MeV • 一些不稳定性 Wmax=?MeV 最低极限能量由和磁场纹波之间的共振作用确定 HT-7上逃逸电子能量大约为 30MeV or 15MeV

  12. 光中子(gamma,n)反应分析 元素: Fe Ni Cr C 阈值(MeV):20.9 20.0 12 10 对于第一壁:不锈钢,石墨,在逃逸放电时都可以产生光中子 这与中子探测器在逃逸时测量到的高通量光中子一致。

  13. 逃逸电子的诊断手段: • 伽马射线诊断:逃逸电子跑出等离子体轰击真空室内壁和限制器,发生厚靶轫致辐射,能量范围在伽马射线。通过测量伽马射线能谱可以得到辐射强度以及逃逸电子的最大能量,和动量信息。 • 红外探测器:逃逸电子在芯部等离子体中稳定的约束的时候发射同步辐射,辐射方向在逃逸电子运动前方的一个小角内,波长在几个微米范围。通过测量红外辐射,我们可以得到芯部等离子体中逃逸电子的动力学,输运等信息,而且其具有高空间分辨率的优点。

  14. 逃逸电子的同步辐射 For 30MeV runways 相对论电子同步辐射的立体角为前向一个小角度内

  15. 估算HT-7上逃逸放电的同步辐射功率 假定放电参数: Ip=100kA,Ne0=0.6*1019m-3 真空容积:1.75m3 总的电子数目: 1.05*1019m-3 逃逸电流 Ir=1kA 逃逸数目为:Nr=5.1*1013 RA相对数目:5*10-4%,百万分之五 一个RA的同步辐射功率: 5*10-17W(7~13 微米) 总辐射功率为2.5*10-3W 切向光路可以探测到1%~2.5*10-5W 一个电子的同步辐射功率谱 逃逸电流 Ir=1A 可以探测到~2.5*10-8W 同步辐射的水平比黑体辐射,等离子体自身的辐射高两个量级。

  16. 逃逸的产生机制 • 产生机制有两个:初级产生机制,和次级产生机制。 • 初级产生是典型的Dreicer产生过程,它就是电场力大于碰撞阻力力而产生逃逸。由于放电初期等离子体温度低,密度也低,而环电压较高,所以这个过程在放电初期很容易发生。 • 次级产生过程也叫雪崩过程,它是已经存在的逃逸电子和本底电子发生近距离的库仑碰撞,使其获得高于逃逸阈值的能量,而成为逃逸电子,发生碰撞的逃逸电子损失部分能量后仍然是逃逸电子,这样就可以像雪崩一样的产生更多的逃逸。主要在电流平顶段占主导。 (high E// or Te). 雪崩逃逸不依赖等离子体的密度.

  17. 逃逸的初级产生 K(1)=0.32, K(2)=0.43

  18. 逃逸的次级产生 t0是雪崩时间常数 包括初级,次级过程,和考虑逃逸的损失和约束时间: 是逃逸电子约束时间 teff是有效时间常数,较小的值表示雪崩强,如果它小于零,逃逸电子数目将减少。 根据温度,密度分布,计算得逃逸电子的分布主要在中心,宽度大约10cm。主要是因为中心温度高,电子热速度大,所以容易逃逸。

  19. 逃逸的次级产生

  20. IR camera in TEXTOR-94

  21. Results from TEXTOR-94

  22. IR camera in AUG

  23. HT-7上新建的逃逸电子诊断 NaI探测器(40*40),测量范围:0.3~10MeV • 正向 2道 • 反向 1道 正向一道CdTe探测器(65mm3) 0.3~1.2MeV PSI组新发展的IR camera,切向测量,适合芯部逃逸电子测量

  24. LHW驱动的快电子成为逃逸种子 50ms后逃逸线性增加,约250ms后到达饱和

  25. LHW抑制逃逸 近几年,几个装置(FTU,TEXT-94)采用NBI,ICRH,ECCD尝试了抑制逃逸,取得了较好的结果,低杂波抑制逃逸还没有尝试。我们首次采用低杂波抑制逃逸,取得了理想的结果。

  26. 不同LHW功率下的逃逸行为 Ip=100kA, ne=1.0*1019m-3,

  27. IR camera results in runaway discharges主要讨论IR信号的来源:同步辐射?热辐射?反射?分析两个位置:窗口和壁

  28. 逃逸的同步辐射?反射?(水冷)

  29. Long pulse

  30. 稳定放电时,测量到的壁的温度为70度,窗口温度为40度,比较正常,应该可以排除反射。稳定放电时,测量到的壁的温度为70度,窗口温度为40度,比较正常,应该可以排除反射。

  31. 壁的温度略微上升,放电结束(16s)后温度衰减很慢壁的温度略微上升,放电结束(16s)后温度衰减很慢

  32. IR信号和逃逸信号的一致性(#78622) 初始时候强度高,放电末期强度低,因为后来加低杂波,环电压低,逃逸弱些

  33. LHW关断,逃逸增强,IR信号和逃逸信号的一致性LHW关断,逃逸增强,IR信号和逃逸信号的一致性 IR intensity

  34. 黑色的是窗口上的分析点,红色的是壁上的

  35. 未修正的IR profile_H

  36. Conclusions: • HT-7上逃逸电子的能量约30MeV,发射红外波长(5~15微米)的同步辐射。 • 光中子产额:第一壁材料都有可能 • 通过测量同步辐射研究芯部逃逸电子在HT-7上是可能的。

  37. 585调研 • Aim:逃逸电子研究的调研,确定HT-7上红外测量的可能性。快电子诊断以及快电子动力学工作的交流。 • Presentation:HT-7上低杂波电流驱动效率和快电子动力学(sawtooth and m=1mode) • 相关方向的调研结果 • 建议

  38. HL-2A控制室

  39. SWIP Experimental Results on HL-1M • LHCD: (by Prof. Yong Liu) • Current drive efficiency • Improved confinement (energy & particle) (by Dr. Z.Y.Cui) • Current profile control (by Dr.Q.W.Yang) • MHD control (by Dr. Yi Yiu) • Ion heating mechanism (by Prof. X.T.Ding) • Effect of LHCD on edge plasma turbulence (by Dr. Y. Huang) • ELM investigation (by Prof.Yong Liu) • Plasma rotation during LHCD (by Prof. W.Y.Hong) • Distribution of the energetic electrons during LHCD • (by Prof. X.T.Ding)

  40. SWIP Main Topics of HL-2A experiments • Confinement & transport • Confinement improvement with formation of internal transport barriers in reversed shear configuration. • H-mode (inc. ELMy H-mode) investigation with powerful NBI heating • MHD instability • The instabilities driven by the energetic particles formed by auxiliary heating • Neo-classical tearing mode stabilization by ECRH • Heating & Fueling • Profile control with auxiliary heating & current drive • The core plasma turbulence investigation in high plasma density during deep fueling • Gas clusters injection as a method of fuelling • Divertor & edge plasma • Divertor/Edge Plasma Closed divertor and modeling • Biased- divertor • MBI-trigged detached plasma • Wall conditioning(Si, B, Li & combination) • PSI and PFM development

  41. NaI探测系统 • 直径为75mm的NaI探测系统,强度测量,0.2~2MeV的硬X射线。没有能谱分析。方向主要是垂直测量限制器。 • 有一套高纯锗探测系统,2万欧元。测量0.2~2MeV的硬X射线。

  42. HL-1M上HgI2探测阵列 • 水平空间7道,用于快电子监测(10~150keV)。

  43. 585逃逸电子实验研究 • HL-2A破裂放电期间逃逸电子产生过程的实验观测,杨青巍 • HL-1M装置逃逸电子的定标律,郑永真 • 补充加料过程中逃逸电子的雪崩现象,杨进蔚 • 低杂波电流驱动中的雪崩逃逸增强及鱼骨不稳定性,杨进蔚

  44. Similar results on burst of FEB

  45. #72602 Ip=160kA, Vl=0.38V, ne=1.5*1019m-3 PLH=400kW (400~1350ms), PIBW=114kW (280~760ms) LHW only IBW+LHW

  46. 585同行建议: 逃逸电子研究方面: 采用大体积探测器(NaI)测量高能硬X射线。 两个所联合申请一个逃逸电子动力学实验研究的自然基金。 快电子诊断: 开展一些联合实验,比如我们的CdTe探测阵列测量HL-2A上的快电子。 实验结果共享(新的实验结果,解释不清的实验结果)

More Related