490 likes | 933 Views
Pertemuan-2. Pengantar Data. Warehouse dan OLAP. Agenda. Pengertian data warehouse Model data multidimensi. •. •. Operasioperasi dalam OLAP Arsitektur data warehouse Kegunaan data warehouse. •. •. •. Apa itu Data Warehousing?. • Data warehouse adalah koleksi dari data yang
E N D
Pengantar Data Warehouse dan OLAP
Agenda Pengertian data warehouse Model data multidimensi • • Operasioperasi dalam OLAP Arsitektur data warehouse Kegunaan data warehouse • • •
Apa itu Data Warehousing? • Data warehouse adalah koleksi dari data yang subjectoriented, terintegrasi, timevariant, dan nonvolatile, dalam mendukung proses pembuatan keputusan. • Sering diintegrasikan dengan berbagai sistem aplikasi untuk mendukung pemrosesan informasi dan analisis data dengan menyediakan platform untuk historical data. • Data warehousing: proses konstruksi dan penggunaan data warehouse.
Data warehouse subject oriented • Data warehouse diorganisasikan di seputar subjek subjek utama seperti customer, produk, sales. • Fokus pada pemodelan dan analisis data untuk pembuatan keputusan, bukan pada operasi harian atau pemrosesan transaksi. • Menyediakan sebuah tinjauan sederhana dan ringkas seputar subjek tertentu dengan tidak mengikutsertakan data yang tidak berguna dalam proses pembuatan keputusan.
Data warehouse subject oriented • Subjek • Aplikasi
Data warehouse terintegrasi • Dikonstruksi dengan mengintegrasikan banyak sumber data yang heterogen. – relational database, flat file, online transaction record • Teknik data cleaning dan data integration digunakan – Untuk menjamin konsistensi dalam konvensi konvensi penamaan, struktur pengkodean, ukuran ukuran atribut dll diantara sumber data yang berbeda. • Contoh: Hotel price: currency, tax, breakfast covered, dll. – Data dikonversi ketika dipindahkan ke warehouse.
Data warehouse terintegrasi Data perlu distandarkan :
Data Warehouse—Time Variant • Data disimpan untuk menyediakan informasi dari perspektif historical, contoh 510 tahun yang lalu. • Struktur kunci dalam data warehouse – Mengandung sebuah elemen waktu, baik secara ekspisit atau secara implisit. – Tetapi kunci dari data operasional bisa mengandung elemen waktu atau tidak.
Data Warehouse — NonVolatile • Data warehouse adalah penyimpanan data yang terpisah secara fisik yang ditransformasikan dari lingkungan operasional. • Data warehouse tidak memerlukan pemrosesan transaksi, recovery dan mekanisme kontrol konkurensi. • Biasanya hanya memerlukan dua operasi dalam pengaksesan data, yaitu initial loading of data dan access of data.
OLAP (online analitical processing) • OLAP adalah operasi basis data untuk mendapatkan data dalam bentuk kesimpulan dengan menggunakan agregasi sebagai mekanisme utama. • Ada 3 tipe: – Relational OLAP (ROLAP): – Multidimensional OLAP (MOLAP) – Hybrid OLAP (HOLAP) membagi data antara tabel relasional dan tempat penyimpanan khusus.
Data Warehouse vs. Operational DBMS • OLTP (online transaction processing) – Major task of traditional relational DBMS – Daytoday operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc. • OLAP (online analytical processing) – Major task of data warehouse system – Data analysis and decision making • Distinct features (OLTP vs. OLAP): – User and system orientation: customer vs. market – Data contents: current, detailed vs. historical, consolidated – Database design: ER + application vs. star + subject – View: current, local vs. evolutionary, integrated – Access patterns: update vs. readonly but complex queries
OLTP vs. OLAP OLTP OLAP users function DB design data usage access unit of work # records accessed #users DB size clerk, IT professional day to day operations applicationoriented current, uptodate detailed, flat relational isolated repetitive read/write index/hash on prim. key short, simple transaction tens thousands 100MBGB knowledge worker decision support subjectoriented historical, summarized, multidimensional integrated, consolidated adhoc lots of scans complex query millions hundreds 100GBTB
Dari tabel dan spreadsheet ke Kubus Data • Data warehouse didasarkan pada model data multidimensional, dimana data dipandang dalam bentuk kubus data • Kubus data, seperti sales, memungkinkan data dipandang dan dimodelkan dalam banyak dimensi – Tabel dimensi, seperti item (item_name, brand, type), or time(day, week, month, quarter, year) – Tabel fakta mengandung measures (seperti dollars_sold) dan merupakan kunci untuk setiap tabeltabel dimensi terkait. nD base cube dinamakan base cuboid. 0D cuboid merupakan cuboid pada level paling tinggi, yang menampung ringkasan data dalan level paling tinggi, dinamakan apex cuboid. Lattice dari cuboidcuboid membentuk sebuah data cube. •
Cube: A Lattice of Cuboids all 0D(apex) cuboid time item location supplier 1D cuboids time,item time,location item,location location,supplier 2D cuboids time,supplier item,supplier time,location,supplier time,item,location 3D cuboids item,location,supplier time,item,supplier 4D(base) cuboid time, item, location, supplier
Pemodelan Konseptual Data Warehouse • Star schema: Sebuah tabel fakta di tengahtengah dihubungkan dengan sekumpulan tabeltabel dimensi. • Snowflake schema: perbaikan dari skema star ketika hirarki dimensional dinormalisasi ke dalam sekumpulan tabeltabel dimensi yang lebih kecil • Fact constellations: Beberapa tabel fakta dihubungkan ke tabeltabel dimensi yang sama, dipandang sebagai kumpulan dari skema star, sehingga dinamakan skema galaksi atau fact constellation.
Contoh Skema Star time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Measures item item_key item_name brand type supplier_type location location_key street city province_or_street country Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales
Contoh skema Snowflake time time_key day day_of_the_week month quarter year item item_key item_name brand type supplier_key supplier supplier_key supplier_type Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales location location_key street city_key branch branch_key branch_name branch_type Measures city city_key city province_or_street country
Contoh Fact Constellation time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Measures item item_key item_name brand type supplier_type location location_key street city province_or_street country Shipping Fact Table time_key item_key shipper_key from_location to_location dollars_cost units_shipped shipper shipper_key shipper_name location_key shipper_type Sales Fact Table time_key item_key branch_key location_key units_sold dollars_sold avg_sales
Hirarki Konsep: Dimensi (Lokasi) all all Europe ... North_America region Germany ... Spain Canada ... Mexico country Vancouver ... city Frankfurt ... Toronto L. Chan ... M. Wind office
Tampilan datawarehouse dan hirarki Specification of hierarchies • Schema hierarchy day < {month < quarter; week} < year • Set_grouping hierarchy {1..10} < inexpensive
Data Multidimensional • Sales volume sebagai fungsi dari product, month, dan region Dimension: Product, Location, Time Hierarchical summarization paths on gi Industry Region Year Category Country Quarter Re Product Product City Month Week Office Day Month
Contoh Kubus Data Total annual sales of TV in U.S.A. U.S.A Canada Date 3Qtr 2Qtr sum 1Qtr 4Qtr t TV PC VCR sum uc od Pr Country Mexico sum
Cuboid yang terkait dengan kubus all 0D(apex) cuboid country product product,date date product,country 1D cuboids date, country 2D cuboids 3D(base) cuboid product, date, country
Browsing kubus data • Visualization • OLAP capabilities • Interactive manipulation
Operasioperasi OLAP Roll up (drillup): summarize data • – by climbing up hierarchy or by dimension reduction Drill down (roll down): reverse of rollup • – from higher level summary to lower level summary or detailed data, or introducing new dimensions Slice and dice: • – project and select Pivot (rotate): • – reorient the cube, visualization, 3D to series of 2D planes.
Operasioperasi OLAP ContohTabel Pivoting
HierarkiDimensiuntuk Roll-up/Drill-down
Rancangan Data Warehouse: Business Analysis Framework • Four views regarding the design of a data warehouse – Topdown view • memungkinkan pemilihan informasi yang relevan yang diperlukan untuk data warehouse – Data source view • memperlihatkan informasi yang diambil, disimpan, dan dikelola oleh sistem operasional – Data warehouse view • terdiri dari tabel fakta dan tabel dimensi – Business query view • melihat perspektif data di gudangdari sudut pandang pengguna akhir
Proses Perancangan Data Warehouse • Topdown, bottomup approaches or a combination of both – Topdown: Starts with overall design and planning (mature) – Bottomup: Starts with experiments and prototypes (rapid) • From software engineering point of view – Waterfall: structured and systematic analysis at each step before proceeding to the next – Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around • Typical data warehouse design process – Choose a business process to model, e.g., orders, invoices, etc. – Choose the grain (atomic level of data) of the business process – Choose the dimensions that will apply to each fact table record – Choose the measure that will populate each fact table record
MultiTiered Architecture Monitor & Integrator Data Warehouse OLAP Server Serve Metadata Extract Transform Load Refresh other source s Operational DBs Analysis Query Reports Data mining Data Marts Data Sources Data Storage OLAP Engine FrontEnd Tools
Data Warehouse BackEnd Tools and Utilities • Data extraction: – get data from multiple, heterogeneous, and external sources • Data cleaning: – detect errors in the data and rectify them when possible • Data transformation: – convert data from legacy or host format to warehouse format • Load: – sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions • Refresh – propagate the updates from the data sources to the warehouse
Three Data Warehouse Models • Enterprise warehouse – collects all of the information about subjects spanning the entire organization • Data Mart – a subset of corporatewide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart • Independent vs. dependent (directly from warehouse) data mart • Virtual warehouse – A set of views over operational databases – Only some of the possible summary views may be materialized
Data Warehouse Development: A Recommended Approach MultiTier Data Warehouse Distributed Data Marts Enterprise Data Warehouse Data Mart Data Mart Model refinement Model refinement Define a highlevel corporate data model
OLAP Server Architectures • Relational OLAP (ROLAP) – Use relational or extendedrelational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces – Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services – greater scalability • Multidimensional OLAP (MOLAP) – Arraybased multidimensional storage engine (sparse matrix techniques) – fast indexing to precomputed summarized data • Hybrid OLAP (HOLAP) – User flexibility, e.g., low level: relational, highlevel: array • Specialized SQL servers – specialized support for SQL queries over star/snowflake schemas
Data Warehouse Usage • Three kinds of data warehouse applications – Information processing • supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs – Analytical processing • multidimensional analysis of data warehouse data • supports basic OLAP operations, slicedice, drilling, pivoting – Data mining • knowledge discovery from hidden patterns • supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools. • Differences among the three tasks
From OnLine Analytical Processing to On Line Analytical Mining (OLAM) • Why online analytical mining? – High quality of data in data warehouses • DW contains integrated, consistent, cleaned data – Available information processing structure surrounding data warehouses • ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools – OLAPbased exploratory data analysis • mining with drilling, dicing, pivoting, etc. – Online selection of data mining functions • integration and swapping of multiple mining functions, algorithms, and tasks. • Architecture of OLAM
An OLAM Architecture Mining query User GUI API OLAM Engine Data Cube API Mining result OLAP Engine Layer4 User Interface Layer3 OLAP/OLAM Layer2 MDDB Layer1 Data Repository MDDB Meta Data Database API Filtering Data cleaning Data Data integration Warehouse Filtering&Integration Databases
Referensi • Data Mining: Concepts and Techniques by Jiawei Han and Micheline Kamber, 2001 • Introduction to Data Mining by Tan, Steinbach, Kumar, 2004