350 likes | 485 Views
Measurement of the 241 Am(n,2n) reaction cross section using the activation method. G. Perdikakis 1,2 , C. T. Papadopoulos 1 , R. Vlastou 1 , A. Lagoyannis 2 , A. Spyrou 2 , M. Kokkoris 1 , S. Galanopoulos 1 , N. Patronis 1 , D. Karamanis 3 , Ch. Zarkadas 2 , G. Kalyva 2 , and S. Kossionides 2.
E N D
Measurement of the 241Am(n,2n) reaction cross section using the activation method G. Perdikakis1,2, C. T. Papadopoulos1, R. Vlastou1, A. Lagoyannis2, A. Spyrou2, M. Kokkoris1, S. Galanopoulos1, N. Patronis1, D. Karamanis3, Ch. Zarkadas2, G. Kalyva2, and S. Kossionides2 n_TOF Collaboration 1 Department of Physics, National Technical University of Athens, Athens, Greece 2Institute of Nuclear Physics, NCSR “Demokritos”, Athens, Greece 3 Department of Physics, University of Ioannina, Ioannina, Greece G. Perdikakis
Outline of the talk • Motivation • Experimental • Analysis • Results for 241Am(n,2n) • Theoretical Calculations (in progress) • Other reactions studied – Future Plans G. Perdikakis
Not enough experimental data ! Theoretical Predictions Transmutation of MAs - Important Reaction Channels • Neutron emission channels σ(n,xn) σ(n,xnf) • Fission Channels Experimental Investigation of Theoretical Model Parametres required G. Perdikakis
241Am: One of the most abundant isotopes in nuclear waste and one of the most radiotoxic elements Existing Data G. Perdikakis
241Am(n,2n)240Am Energy Range of Interest: 8-12 MeV G. Perdikakis
Shielding wall Monoenergetic Neutron Beams @ INP “Demokritos” 5.5MV Tandem VdG p+ or d+ beam ~ 105n/cm2s 7Li(p,n)7Be 150 – 650 keV ~ 106n/cm2s 2H(d,n)3He 5 – 12 MeV ~ 105n/cm2s 3H(d,n)4He 16 – 20 MeV G. Perdikakis
The Activation Target 3mm Pb shield 27 Al foil n Beam 37 GBq 241 Am target Stainless Steel G. Perdikakis
Pb HPGe Irradiation Setup D filled Gas Cell d+ 9cm ΔΕn: < 100 keV n Beam 241Am Target 2 m Parafin BF3 Neutron Counter G. Perdikakis
n+241Am n+241Am 240Pu Outline of the Reaction 241Am(n,2n)240Am Fission E,J,π 3n+239Am n T1/2=50.8h 2n+240Am γ 242Am Most Intense γ-rays: 5 days of irradiation for each beam energy ! 987.8 keV (I=73%) 888.8 keV (I=25%) G. Perdikakis
987.8 keV 240Am 154Eu 1014.7 keV 241Am 955.7 keV 241Am 984.5 keV 238Np +154Eu HPGe spectrum @ 10.6 MeV
Reaction Cross Section G. Perdikakis
Results G. Perdikakis
G. Perdikakis et al. , Phys. Rev. C - In press Results G. Perdikakis
n+241Am n+241Am 240Pu Outline of the Reaction 241Am(n,2n)240Am Fission E,J,π 3n+239Am n T1/2=50.8h 2n+240Am γ 242Am Hauser Feshbach: Preequilibrium contribution : Exciton Model STAPRE/F G. Perdikakis
n+X The double-humped fission barrier ρΝ ρΑ ρΒ Saddle A states Saddle B states Normal states Fission n ħωΑ ħωΒ UA UB scission βΝ βΒ βΑ Deformation, β G. Perdikakis `
Main parametres of the calculation • Level Density, ρ(U,J), at the saddles and at normal deformation • Transmission Coefficients for neutrons,Τn Coupled Channels OMP for actinides (Ignatyuk et. al. Sov. J. Nucl. Phys. 51, (5), 1990) • Fission Barrier Parametre UA,UB,ħωΑ,ħωΒ Deduced from experimental data (V. M. Maslov. RIPL-1 Handbook. TEXDOC-000, IAEA, Vienna, 1998, Ch. 5.) G. Perdikakis
Shell, Superfluid pairing and Collective effects, important for the calculation a=ã[1+δw·f(U-Econd)] Generalized Superfluid Model of the nucleus Ignatyuk et al, Sov. J. Nucl. Phys 29, (4), 1979 G. Perdikakis
241Am(n,F) Results Preliminary !!! 241Am(n,2n) G. Perdikakis
Conclusions Measurement of the 241Am(n,2n) reaction @ En = 8.8 – 11.4 MeV 241Am(n,2n) Theoretical calculations in progress 241Am(n,F) Other measurements • 232Th(n,2n) D. Karamanis et al. NIM A 505, 381, (2003) • n-induced reactions on Ge, Hf and Ir isotopes In progress • 237Np(n,2n) To be done G. Perdikakis
Results Preliminary !!! 241Am(n,2n) G. Perdikakis
Conclusions and Future Perspectives • Systematic Experimental Investigation of 241Am(n,2n) Reaction Cross Section, for the first time • Consistent Theoretical Description of 241Am(n,2n) Reaction, in Reasonable Agreement with Experimental Data. • Experimental Investigation to be Continued at Lower Energies • Improvement of Theoretical Description over the whole energy range
Results 241Am(n,f) 241Am(n,2n)240Am
Higher Fission/Capture ratio More effective Transmutation Main Characteristics • Sub-critical Systems • Transmutation of Nuclear Waste • Neutrons produced by Spallation Reaction in Accelerator S. Taczanowski et. al. Applied Energy 75, 97, (2003) Minor Actinides (Am, Cm, Np) • Not enough delayed neutrons Not a good reactor fuel Energy Production and Nuclear Waste Transmutation in ADS Systems Neutron Flux in Reactor Core affected by n-induced reactions
Off Line HPGe 241Am Target Pb shielding
Neutron Flux vs Time 5000000 4000000 3000000 Neutron Flux (counts) 2000000 5 days of Irradiation 1000000 Parafin E = 10.6 MeV 0 n 0 100000 200000 300000 400000 Irradiation Time (sec) Irradiation Setup D filled Gas Cell d+ n Beam 241Am Target BF3 Neutron Counter
Neutron Flux vs Time 5000000 4000000 3000000 (counts) Neutron Flux 2000000 5 days of Irradiation 1000000 E = 10.6 MeV 0 n 0 100000 200000 300000 400000 Irradiation Time (sec) Mapping the Neutron beam fluctuations
Pb HPGe
Measurement of the 241Am(n,2n) cross section by the activation method ExperimentalDifficulties • Highly radioactive target, • Relatively long half life of 240Am (50.8 h)