1 / 23

Interactions supernovae-nuages moléculaires:

Interactions supernovae-nuages moléculaires: effets d'ionisation par le rayonnement cosmique de basse énergie (financement PCHE + PCMI). Thierry Montmerle Laboratoire d’Astrophysique de Grenoble et Institut d’Astrophysique de Paris. TeV astronomy :

armen
Download Presentation

Interactions supernovae-nuages moléculaires:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interactions supernovae-nuages moléculaires: effets d'ionisation par le rayonnement cosmique de basse énergie (financement PCHE + PCMI) Thierry Montmerle Laboratoire d’Astrophysique de Grenoble et Institut d’Astrophysique de Paris

  2. TeVastronomy: sources in the galactic plane &evidence for supernovae

  3. Čerenkovtelescopes DE ~ 0.1-100 TeV Dθ ~ 0.1° ~ mol. cloud @ 2-3 kpc

  4. HESS: High EnergyStereoscopic System (Namibia) VERITAS (S. Arizona) Čerenkov TeVtelescopes MAGIC (CanaryIsl.)

  5. HESS galactic plane survey W28 Galactic center Wes 2 Carina arm

  6. 3EG (GeV: Compton GRO) TeV R. Wagner, in Grenier 2008

  7. The g-raysky as seen by Fermi-LAT (Eg ~ 30 MeV-10-300 GeV) 1st yr: 2008-2009 1st catalog (2009): 1451 sources

  8. TeVg-ray sources • Strong concentration along the galactic plane • So far, only a few cross-identificationsbetweenGeV and TeV sources (increasing) • Majority of identified sources connectedwith the end stages of massive star evolution, especiallysupernova remnants (SNRs): • A few compact X-raybinaries (accreting neutron star + companion) • Many “pulsar windnebulae” (“plerion SNR”: Crab-like; g-raysfrom leptons: synchrotron) • Isolatedyoungsupernova remants (Cas A: synchrotron + inverse Compton) • Increasingnumber of oldSNRsinteractingwithmolecularclouds (extendedg-ray sources): CR hadrons at last ? (See COS-B results: “SNOBs”, Montmerle 1979) • Stillmanyunidentified sources (“darkaccelerators”)

  9. IC443 SNR and itsenvironment (d ~ 1.5 kpc, age ~ 3x104yrs) Gem OB1 association IC444 GeV IC443 TeV η Gem pulsar CO OH maser (v ~ 70-100 km/s) Hα

  10. M20 (Trifid) W28 SNR d ~ 2-3 kpc Age ~ 35-150,000 yrs

  11. W28 SNR (Namibia) TeV GeV TeV TeV Aharonian et al. 2009

  12. HESS J1828+020 Radio cm New SNR (jan. 2010): G35.6-0.4 d ~ 10 kpc ? Age ~ 30,000 yr ? CO

  13. 2. Cosmic-rayinducedcloudionization

  14. Whylow-energy (MeV) cosmic rays ? • So far, SN shock interactions with local ISM tested by way of positionalcoincidence, and by enhancedmolecularvelocitycriteria • OH masers (if present) trace moderateshocks (vs < 100 km/s) withinlocalized dense material • p°-decayTeV/GeVemission by molecularclouds good indication of "physical interaction" between local HE CR (> 0.1-10 TeV) and bulkmatter • Other test of "global" interaction: enhancedmolecularcloudionization by the low-energy (<100 MeV) CR component • If successful, gives in addition the local (low-energy) CR spectrumconvolvedwith diffusion coefficient

  15. General idea: assume TeVg-rays come from > TeV protons (p° decay) accelerated by the SNR shock • => Enhancedmolecularcloudionizationcomesfromassociatedlow-energy GCR (> 10 MeV-100 MeV): • Ionizationlosses: stoppingcolumndensity ~ 10 g.cm-2 i.e., ~ a few 1025 cm-2 (e.g., Fatuzzo et al. 2006) => equivalent total irradiated AV ~ 10000 ! • >> N(H2) even for dense molecularcores (x 1022 cm-2 ) • => Efficient confinementnecessary: turbulent magneticfields… True for galacticcosmic rays in general ! • => Measureionizationdegreexe: local CR flux enhancement • Usual value ~ 10-17-10-16 s-1 => for ne ~ 104-105 cm-3, xe ~10-8-10-7 (e.g., Caselli et al. 1998) • => important chemicaleffects (=> H3+ ; H2D+ ; radicals…) • => role in star formation ? (+ magneticfields: ambipolar diffusion) • => Link withGeV/TeV flux

  16. “Ionization test”: ongoing IRAM-30m programs (PI C. Ceccarelli + TM, Dubus, Hily-Blant, Lefloch, + Montpellier/Annecy) • Sample of TeV sources: • SNOB-like sources (IC443, W28, W51C, Cyg OB1) • "Darkaccelerators" (HESS J1841…): extended, but no obviouscounterpart • mm observations: HCO+, DCO+, 12CO, 13CO • CO + H3+ –> HCO+ + H2 • CO + H2D+ –> DCO+ + H2 = 3 DCO+/HCO+ (e.g., Guélin et al. 1977) • xe • + cloud mass from12CO and 13CO measurements

  17. Fermi: Abdo et al. 2009 • W51C SNR • (d ~ 6 kpc, • age ~ 30,000 yrs) • One of the most • luminousg-ray sources • in the Galaxy ! HESS 2010 (prelim.)

  18. W51C, IRAM 30m <xe> x ∼100 H13CO+ DCO+ Hily-Blant, Ceccarelli, Montmerle, Dubus, et al., in prep.

  19. TeV W28 SNR SNR GeV Ep ~ MeV ? Ep > TeV TeV TeV Aharonian et al. 2009

  20. ↪ IRAM 30m proposal Sep. 2010 SF2A-PCHE (22-23/6/10) 21

  21. Conclusions (provisoires…) • Méthode de mesure d’ionisation validée • Cartographie (échantillonnage): nécessite haute résolution pour “bien viser” • Enjeux des observations W28: • Intérêt général: première “carte d’ionisation” d’un nuage moléculaire • Recherche de gradient d’ionisation (amont-aval du choc SNR): lien avec diffusion du RC de basse énergie, et “test” in situ des modèles d’accélération • MAIS: autres sources d’ionisation existent (UV du choc…)

More Related