an overview of plant evolution l.
Skip this Video
Loading SlideShow in 5 Seconds..
An overview of Plant Evolution PowerPoint Presentation
Download Presentation
An overview of Plant Evolution

Loading in 2 Seconds...

play fullscreen
1 / 34

An overview of Plant Evolution - PowerPoint PPT Presentation

  • Uploaded on

An overview of Plant Evolution. Key Moments in the life of Kingdom Plantae. How did we get from here to there?. Key “Moments” in Plant Evolution. The Transition to Land Development of Vascular Systems Evolution of Heterospory Evolution of the Seed Diversification of the Angiosperms.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'An overview of Plant Evolution' - arleen

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
an overview of plant evolution

An overview of Plant Evolution

Key Moments in the life of Kingdom Plantae

key moments in plant evolution
Key “Moments” in Plant Evolution

The Transition to Land

Development of Vascular Systems

Evolution of Heterospory

Evolution of the Seed

Diversification of the Angiosperms

1 the transition to land ca 475 mya
The risks: Harsh environment…

Heat, dessication, damage by UV rays

The rewards: Great opportunity…

Plentiful CO2, sunlight, few competitors or herbivores.

The importance: paved the way for other organisms

Food for herbivores; First soils!

1. The transition to Land - ca. 475 mya
ancestors of the plantae
Ancestors of the Plantae
  • The Plantae evolved from green algae, most likely a group called the charophytes.
  • Evidence:
    • Plants and green algae contain chlorophyll b.
    • Chloroplasts of both have a similar structure in which thylakoid membranes are stacked as grana.
    • Cell wall structure of both is very similar (about 22-26% cellulose)
    • DNA sequence data supports close relationship between these groups.
challenges of living on land
Challenges of living on land
  • Water is a supportive medium, air is not.
  • Algae are surrounded by a medium that contains water and minerals and can take in their requirements across the whole body.
challenges of living on land9
Challenges of living on land
  • To survive on land a plant must:
    • Avoid drying out.
    • Be able to hold itself up.
    • Possess differentiated tissues because air and soil differ in composition and resources. Exploiting these different media requires specialized tissues.
    • Solve the problem of reproducing outside water.
transition to land
Transition to land
  • It is believed that ancestral charophytes lived in shallow water that sometimes dried out (as do modern charophytes).
  • Selection would have favored adaptations in these charophytes to resist drying out such as waxy cuticles and protecting developing embryos within layers of tissue. These preadaptations facilitated the transition onto land.
reproduction on land
Reproduction on land
  • Moving onto land required the development of new forms of reproduction.
  • Algae shed their gametes into the water, but on land gametes must be protected against desiccation.
reproduction on land12
Reproduction on land
  • Plants produce gametes within gametangia (protective layers of tissue that prevent gametes from drying out).
  • Egg is fertilized within female gametangium (called the archegonium) and embryo develops for some time inside archegonium.
  • Retention of the developing embryo by plants is a fundamental difference from algae. Because this difference is so basic, plants are sometimes described as embryophytes.
transition to land15
Transition to land
  • The ancestor of modern plants once established on land had enormous opportunities.
  • No competition for sunlight or minerals and no herbivores.
  • Selection rapidly led to a massive diversification of plants.
2 rise of vascular plants
2. Rise of Vascular plants
  • The first land plants lacked vascular tissue (as is true of most mosses today) so they could not transport water, sugars or minerals around the plant.
  • Lack of vascular tissue also, of course, limited the size of plants.
2 rise of vascular plants17
2. Rise of Vascular plants
  • Once the first plants moved onto land, selection quickly led to the development of specialized roots and shoots.
  • Roots and shoots required the development of a vascular system to move water and other essentials around the plant and by about 400mya early vascular plants had begun to diversify.
  • Large ferns and other seedless plants came to dominate the land in the Carboniferous Period.
3 transition from homospory to heterospory
3. Transition from homospory to heterospory
  • Homospory means spores are the same size and heterospory that microspores (male) and megaspores (female) differ in size.
  • Microspores develop into male gametophytes and megaspores into female gametophytes.
3 transition from homospory to heterospory19
3. Transition from homospory to heterospory
  • Mosses and most ferns are homosporous. Conifers and flowering plants are heterosporous.
  • Homosporous plants produce spores that develop into bisexual gametophytes that produce both sperm and eggs.
  • For successful fertilization, homosporous plants need water in the form of rainfall when gametes are mature.
3 transition from homospory to heterospory20
3. Transition from homospory to heterospory
  • Some homosporous plants evolved heterospory.
  • With heterospory in which the female gametophyte is enclosed and protected and there is no need for water to ensure fertilization.
  • Heterospory led to the evolution of seeds.
4 evolution of the seed
4. Evolution of the seed
  • In mosses the life cycle is dominated by the gametophyte generation.
  • In ferns the sporophyte generation is dominant and the gametophyte is reduced, but still visible to the naked eye.
  • In seed plants the gametophyte generation is so reduced that in most cases it is microscopic
4 evolution of the seed24
4. Evolution of the seed
  • The reduction of size of the female gametophyte has meant that it can be enclosed and protected within sporophyte tissue (the ovule).
  • The female gametophyte is not dispersed and is protected from drying out and other hazards.
4 evolution of the seed25
4. Evolution of the seed
  • The male gametophyte is what is dispersed in seed plants. It is also protected by sporophyte tissue, the pollen grain.
  • Pollen lands on the ovule and eventually fertilizes egg produced by the female gametophyte. Embryo (sporophyte 2n) then develops.
advantages of seeds
Advantages of seeds
  • Provides protection and nourishment for developing embryo.
  • Dispersal: seeds can be dispersed more widely than spores by enclosing them in a bribe (fruit) and having animals move them.
  • Dormancy: the developing embryo is protected and can wait a long time to germinate when conditions are good.
seeds vs spores
Seeds vs spores
  • Seeds are better than spores because spores have a short lifetime.
  • Spores are thinner walled and more vulnerable to pathogens and damage.
angiosperm diversification
Angiosperm diversification
  • The angiosperms have been enormously successful.
  • There are now about 235,000 species in comparison to just over 700 gymnosperms.
flowers and fruit
Flowers and fruit
  • The key to the success of the Angiosperms has been that they have evolved flowers and fruit.
  • Fruit protects the seeds and aids in their dispersal.
  • The fruit is a bribe. Animals eat the fruit and spread the seeds.
flowers and pollination
Flowers and pollination
  • A major advantage of flowers is that they have allowed angiosperms to use other organisms to move their pollen about.
  • Bees, bats, birds and others all transport pollen. They are attracted to flowers by the nectar and pollen [bribes] provided by the plant and when they visit multiple flowers they move pollen from one to the next