Coulomb excitation of the 42 Ca with AGATA Demonstrator - PowerPoint PPT Presentation

coulomb excitation of the 42 ca with agata demonstrator n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Coulomb excitation of the 42 Ca with AGATA Demonstrator PowerPoint Presentation
Download Presentation
Coulomb excitation of the 42 Ca with AGATA Demonstrator

play fullscreen
1 / 20
Coulomb excitation of the 42 Ca with AGATA Demonstrator
116 Views
Download Presentation
april-hayden
Download Presentation

Coulomb excitation of the 42 Ca with AGATA Demonstrator

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Coulomb excitation of the 42Ca with AGATA Demonstrator K. Hadyńska-Klęk1,2 P.J. Napiorkowski1, A. Maj3, F. Azaiez4, J.J. Valiente Dobon5 on behalf of the AGATA Collaboration 1) Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland 2) Institute of Experimental Physics, University of Warsaw, Warsaw, Poland 3) H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland 4) Institute for Nuclear Physics, Orsay, France 5) INFN Laboratori Nazionali di Legnaro, Legnaro, Italy

  2. 40Ca vs 42Ca Highly collective structure were found in the 40Ca (also in36,38Ar) B(E2; 4+2+ in SD) = 170 W.u (DSAM) Deformation of the 2+ state in the superdeformed band: β2=0.59(9) (E. Ideguchi et al., Phys. Rev. Lett. 87 2001) 42Ca40Ca

  3. 40Ca vs 42Ca B(E2) values in42Ca suggest smaller deformation of the of the 0+(1837 keV) band than in the case of 40Ca observation of GDR feeding of presumably deformed band in 42Ca from very deformed hot 46Ti (M.Kmiecik et al. Acta Phys. Pol. B36, 1169(2005)) moment of inertia very similar to that found for the SD-band in 40Ca 42Ca

  4. 42CaCOULEX @ LNL DANTE: 3MCP detectors covered θ range 100°-144° • beamtime: Feb.2010 • beam: 42Ca, 170 MeV • target: 208Pb, 1 mg/cm2 AGATA: 3 clusters at 143.8 mm from the target particle – γ coincidence mode: trigger rate 150÷250 Hz

  5. Preliminary results K. Hadyńska-Klęk et al., (Acta Phys. Pol B 42, 817 (2011))

  6. Preliminary results K. Hadyńska-Klęk et al., (Acta Phys. Pol B 42, 817 (2011))

  7. Doppler Effect Correction 42Ca 208Pb 42Ca

  8. Doppler Effect Correction 208Pb 42Ca 208Pb 42Ca

  9.  lines after Doppler correction – two MCP detectors at θ1=210oandθ2=150o

  10. Tentative level scheme of 42Ca K. Hadyńska-Klęk et al., (Acta Phys. Pol B 42, 817 (2011))

  11. If 1- at 3885 keV… E1 E3 • Excitation via E2(01+→ 21+) and E3(21+→ 1-) transitions • Deexcitation via E1(1- → 02+ ) 2048 keV • GOSIA calculations: B(E3; 21+→ 1-) > 2.5*106 W.u. E2

  12. If 1- at 3885 keV… EXCLUDED E1 E3 • Excitation via E2(01+→ 21+) and E3(21+→ 1-) transitions • Deexcitation via E1(1- → 02+ ) 2048 keV • GOSIA calculations: B(E3; 21+→ 1-) > 2.5*106 W.u. E2

  13. We assume that the observed gamma line comesfrom a 2+ level placed at 2048 keV The 22+state can be populated directly via E2(01+ → 22+) Deexcitation – through E2(22+ → 01+) with 2048 keV It was enough to reproduce the intensity of the 2048 keV gamma ray with B(E2; 22+ → 01+) ~ 1 W.u Observation of the 376 keV line supports this scenario But... No signs of this lines in the known level scheme and previous experiments W.J. Kossler et al., Phys. Rev. 177, 1725 (1969) Postulated interpretation

  14. Another unexpected effect In multi-step Coulex each additional step leads to a weaker excitation → we expected more counts in the 2424 keV line than in the 1729 keV transition In the experiment, the 1729 keV line is stronger! 1729 keV = 4400 counts 2424 keV = 300 counts It seems that the 42+ state is populated stronger that the 22+ in the same band! Excitation of the presumably SD band is smaller then it was expected or… Deexcitation of 2424 keV state goes also through the 376 keV!

  15. Motivation for the additional experiments - coincidences analysis was performed but is not conclusive As long as 376 and 2048 keV  lines are not placed in the level scheme, the COULEX analysis results will require to make additional assumptions Also proovement of the possible superdeformation will be less convincing The aim of the additional experiments: investigation of the medium and low spin region in 42Ca

  16. Experiment @ HIL Warsaw Beam: 32S, 1 pnA, 76 MeV Target: 12C, 4 mg/cm2 Reaction: 12C(32S,2p)42Ca Cross section for 2p reaction channel: 110 mb (COMPA & PACE codes) EAGLE-II array The most important issues: - possible new level at 2048 keV - branching ratio determination of the decay  lines from 2424 keV level -  ray angular correlation – to assign spin and parity of the new state(s)

  17. Experiment @ HIL Warsaw Beam: 32S, 1 pnA, 76 MeV Target: 12C, 4 mg/cm2 Reaction: 12C(32S,2p)42Ca Cross section for 2p reaction channel: 110 mb (COMPA & PACE codes) EAGLE-II array ACCEPTED 10-14.X.2011 The most important issues: - possible new level at 2048 keV - branching ratio determination of the decay  lines from 2424 keV level -  ray angular correlation – to assign spin and parity of the new state(s)

  18. Any theories?

  19. Any theories?If yes, please contact me:kasiah(at)slcj.uw.edu.pl

  20. Special thanks to P.J. Napiorkowskia, A. Majb, F. Azaiezc, J.J. Valiente-Dobond, G. de Angelisd, Anil Kumarb, D. Bazzaccoe, P. Bednarczykb, M. Bellatoe, G. Benzonif, L. Bertid, D. Bortolatod, B. Bruyneelg, F. Cameraf, M. Ciemałab, P. Cocconid, A. Colomboe, A. Corsif,F. Crespif, A. Czermakb, Ch. Drostei, B. Dulnyb, E. Farneae, B. Fornalb, S. Franchooc, A. Gadeah, A. Giazf, A. Gottardod, X. Gravec, J. Gręboszb, E. Grodneri, M. Gulminid, H. Hessg, R. Isocratee, J.Iwanickia, G. Jaworskia,l, M. Kicińska-Habiori, M. Kmiecikb, N. Kondratyevj, A. Korichim, W. Kortenn, J. Kownackia, M. Kowalczyka, M.Kisielińskia, G. Lehauto, S. Lenzie,k, S. Leonif, S. Lunardie,k, G. Marond, R. Menegazzoe, D. Mengonip,e, E. Merchanr,s, W. Męczyńskib, C. Michelagnolie,k, J. Mierzejewskia, P. Molinie,k, D.R. Napolid, R. Nicolinif, M. Niikurac, M. Palacza, G. Rampazzoe, F. Recchiae,k, N. Redono, P. Reiterg, D. Rossod, E. Sahind, J. Srebrnya, I. Stefanc, O. Stezowskio, J. Styczeńb, N. Toniolod, C.A. Ure, V. Vandonef, B. Wadswortht, A. Wiensg, K. Wrzosek-Lipskaa, M. Zielińskaa, M. Zięblińskib a) Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland b) H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland c) Institute of Nuclear Physics, Orsay, France d) INFN Laboratori Nazionali di Legnaro, Legnaro, Italy e) INFN Sezione di Padova, Padova, Italy f) Universita di Milano and INFN sezione di Milano, Milano, Italy g) University of Cologne, Cologne, Germany h) IFIC, CSIC-University of Valencia, Valencia, Spain i) Institute of Experimental Physics, University of Warsaw, Warsaw, Poland j) Joint Institute for Nuclear Research, Dubna, Russia k) Universita' di Padova, Padova, Italy l) Faculty of Physics, Warsaw University of Technology, Warsaw, Poland m) CSNSM Orsay, France n) CEA Saclay, France o) IPN Lyon, France p) University of the West of Scotland, Paisley, UK r) TU Darmstadt, Germany s) GSI Darmstadt, Germany t) University of York, York, UK