1 / 3

L 1 Regression LS (L 2 ) is strongly affected by outliers

L 1 Regression LS (L 2 ) is strongly affected by outliers If outliers are due to incorrect measurements, the inversion should minimize their effect on the estimated model.

anja
Download Presentation

L 1 Regression LS (L 2 ) is strongly affected by outliers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. L1 Regression LS (L2) is strongly affected by outliers If outliers are due to incorrect measurements, the inversion should minimize their effect on the estimated model. Effects of outliers in LS is shown by rapid fall-off of the tails of the Normal Distribution In contrast the Exponential Distribution has a longer tail, implying that the probability of realizing data far from the mean is higher. A few data points several  from <d> is much more probable if drawn from an exponential rather than from a normal distribution. Therefore methods based on exponential distributions are able to handle outliers better than methods based on normal distributions. Such methods are said to be robust.

  2. L1 Regression min ∑ [di -(Gm)i]/i = min ||dw-Gwm||1 thus more robust to outliers because error is not squared Example: repeating measurement m times: [1 1 … 1]T m =[d1 d2 … dm]T mL2 = (GTG)-1GTd = m-1∑ di f(m) = ||d-Gm||1 = ∑ |di-m| Non-differentiable if m=di Convex, so local minima=global minima f’(m) = ∑ sgn(di-m), sgn(x)=+1 if x>0, =-1 if x<0, =0 if x=0 =0 if half is +, half is - <d>est = median, where 1/2 of data is < <d>est, 1/2 > <d>est

  3. L1 Regression Finding min ||dw-Gwm||1is not trivial. Several methods available, such as IRLS, solving a series of LS problems converging to a 1-norm: r=d-Gm f(m) = ||d-Gm||1 = ||r||1 = ∑ |ri| non-differentiable if ri=0. At other points: ∂f(m)/∂mk = - ∑ Gi,k sgn(ri) = -∑ Gi,k ri/|ri| f(m) = -GTRr = -GTR(d-Gm) Ri,i=1/|ri| f(m) = -GTR(d-Gm) = 0 GTRGm = GTRd R depends on m, nonlinear system :( IRLS!

More Related