supuestos del analisis de varianza l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
SUPUESTOS DEL ANALISIS DE VARIANZA PowerPoint Presentation
Download Presentation
SUPUESTOS DEL ANALISIS DE VARIANZA

Loading in 2 Seconds...

play fullscreen
1 / 25

SUPUESTOS DEL ANALISIS DE VARIANZA - PowerPoint PPT Presentation


  • 584 Views
  • Uploaded on

SUPUESTOS DEL ANALISIS DE VARIANZA. Mario Briones L. MV, MSc 2005. Principales supuestos. Los términos del error son aleatoria, independiente y normalmente distribuidos. Las varianzas de los diferentes grupos son homogéneas.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'SUPUESTOS DEL ANALISIS DE VARIANZA' - andrew


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
supuestos del analisis de varianza

SUPUESTOS DEL ANALISIS DE VARIANZA

Mario Briones L.

MV, MSc

2005

principales supuestos
Principales supuestos
  • Los términos del error son aleatoria, independiente y normalmente distribuidos.
  • Las varianzas de los diferentes grupos son homogéneas.
  • Las varianzas y los promedios de los grupos no están correlacionados.
  • Los efectos principales son aditivos.
normalidad
Normalidad
  • Las desviaciones de la normalidad no afectan seriamente la validez del análisis.
  • Independencia significa que no hay relación entre el tamaño de los términos de error y el grupo al cual pertenecen.
homogeneidad de las varianzas
Homogeneidad de las varianzas
  • El análisis de varianza utiliza un cuadrado medio de error combinado, para obtener la mejor estimación de una varianza común a todos los grupos.
  • Si las varianzas entre los grupos son diferentes no hay justificación para combinarlas.
homogeneidad de las varianzas5
Homogeneidad de las varianzas
  • Ejemplo

Varianzas iguales

m1

m2

m3

m4

m

Hipótesis nula

falsa

Hipótesis nula

verdadera

No existen problemas si las varianzas son iguales

entre los grupos.

homogeneidad de las varianzas6
Homogeneidad de las varianzas
  • Ejemplo

Varianzas diferentes

m1

m2

m3

m4

m

Hipótesis nula

falsa

Hipótesis nula

verdadera

No existen problemas si las varianzas son iguales

entre los grupos.

tabla de an lisis de varianza
Tabla de Análisis de Varianza

LSD (diferencia mínima significativa, la menor

diferencia entre dos grupos que será estadísticamente

significativa.

conclusi n
Conclusión
  • La diferencia mínima significativa es razonable para la diferencia entre los promedios de C y D pero no lo es para los promedios Ay B.
  • La solución es analizar los grupos AB y CD por separado.
independencia de medias y varianzas
Independencia de medias y varianzas
  • A veces existe una relación definida entre las muestras y sus varianzas.
  • Generalmente invloucra mayor varianza para las muestras que tienen mayor promedio.
independencia de medias y varianzas12
Independencia de medias y varianzas
  • Ej. Aplicación de insecticidas para el control de garrapata en el perro
    • Dos tratamientos poco efectivos: 305 y 315 garrapatas sobrevivientes
    • Dos tratamientos efectivos: 5 y 15 garrapatas sobrevivientes.
    • Si las varianzas son homogéneas y no relacionadas con las medias, ambas diferencias tienen la misma importancia dado que tienen la misma magnitud.
independencia de medias y varianzas13
Independencia de medias y varianzas
  • Otro ejemplo: un investigador desea probar el efecto de una nueva vitamina sobre el peso de animales y desea incluir varias especies para darle amplitud a sus inferencias.
  • Las magnitudes de las diferencias de interés en las diferentes especies son completamente diferentes.
supuesto de aditividad
Supuesto de Aditividad
  • Cada diseño experimental tiene un modelo matemático denominado modelo lineal aditivo.
  • Ej. En un análisis con un factor como causa de variación:
  • Yij= m+Ai+eij
  • En un análisis con dos factores (ej. Tratamiento y bloque:
  • Yijk= m+ Ai+Bj+eijk
slide15
Modelo lineal aditivo significa que la varianza de una observación individual (Y), perteneciente a una estructura clasificada de datos, es función de la media poblacional m, MAS los efectos de las diferentes clasificaciones y el error residual asociado a las observaciones ya clasificadas
slide16
Por ejemplo, en un diseño en bloque al azar, la linearidad implica que el efecto de un tratamiento es el mismo en todos los bloques y que el efecto de bloque es el mismo para todos los tratamientos.
prueba de bartlett para homogeneidad de varianzas
Prueba de Bartlett para homogeneidad de varianzas
  • El test de Bartlett tiene distribución de Chi cuadrado con un grado de libertad y es igual a
estad stico de bartlett
Estadístico de Bartlett:

N= total de observaciones

a= número de grupos

S2i= varianza muestreal del i ésimo grupo

en internet
En Internet:

home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/BartletTest.htm

Realiza comparación de homogeneidad de varianzas

hasta en 14 grupos.

Se ingresa el número de observaciones por grupo y la

varianza

transformaciones
Transformaciones
  • Transformaciones de escala de los datos permiten corregir muchas de las violaciones de los supuestos
transformaci n logar tmica
Transformación logarítmica
  • Cada vez que las desviaciones estándares (NO LAS VARIANZAS sean proporcionales a los promedios, la transformación más apropiada será la logarítmica.
  • También en casos que exista evidencia de efectos multiplicativos en lugar de aditivos.
transformaci n logar tmica22
Transformación logarítmica
  • Cualquier logaritmo sirve, base 10 es el más utilizado.
  • Cuando existen ceros, reemplazan por 1.
  • Si hay muchos ceros no es conveniente utilizar esta metodología.
  • Antes de la transformación es posible multiplicar todos los datos por una constante.
transformaci n de ra z cuadrada
Transformación de raíz cuadrada
  • Normalmente se aplica cuando se trata de números que registran acontecimientos poco comunes.
    • Observaciones de animales en transectos.
    • Animales muertos en diferentes grupos.
    • Se calcula directamente la raíz cuadrada y se hace el ANDEVA o bien se utiliza la siguiente expresión para valores menores a 10
transformaci n angular o de bliss
Transformación angular o de Bliss
  • Se efectúa para analizar datos de porcentajes, en los cuales, de modo natural, la varianza no es homogenea.
    • Se saca raiz de la proporción (no del porcentaje).
    • Se saca seno inverso del resultado.
transformaci n angular o de bliss25
Transformación angular o de Bliss

Formula del seno inverso= ASENO(X)*180/PI()