440 likes | 511 Views
Explore the far infrared spectrum of the diatomic molecule CO to measure line frequencies accurately, determine the Bo value for rotational transitions, and calculate the bond length in Ångstroms. The analysis involves rotational spectroscopy of linear molecules, deriving formulas for Bo, and investigating energy levels and selection rules for transitions.
E N D
This is the far infra red spectrum of the diatomic molecule CO. It is due to absorption by pure rotational transitions of this molecule. Measure the line frequencies as accurately as possible and thus determine the Bo value and from this calculate a bond length in Å.
This is the far infra red spectrum of the diatomic molecule CO. It is due to absorption by pure rotational transitions of this molecule. Measure the line frequencies as accurately as possible and thus determine the Bo value and from this calculate a bond length in Å. I = μro2μ = m1m2/(m1+m2) Io (uÅ2) = 16.863/ Bo(cm-1) Assume C has mass 12.0 and O mass 16.0
This is the far infra red spectrum of the diatomic molecule CO. It is due to absorption by pure rotational transitions of this molecule. Measure the line frequencies as accurately as possible and thus determine the Bo value and from this calculate a bond length in Å. I = μro2μ = m1m2/(m1+m2) Io (uÅ2) = 16.863/ Bo(cm-1) Assume C has mass 12.0 and O mass 16.0 NB The subscript o indicates that Bo, Io and ro are for the v=0 vibrational state
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
J+1 J Harry Kroto 2004
J+1 J Harry Kroto 2004
J+1 BJ(J+1) J Harry Kroto 2004
B(J+1)(J+2) J+1 BJ(J+1) J Harry Kroto 2004
B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
Rotational Spectroscopy of Linear Molecules J 7 56B 14B 6 42B 2B 4B 6B 8B 10B 12B… 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 0 2B
B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
Absorption B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
5 10 J= 12 15 20B Harry Kroto 2004
Line separations 2B Harry Kroto 2004
J=5 J=15 20B Line separations 2B Harry Kroto 2004
Rotational Spectroscopy of Linear Molecules J 7 56B 14B 6 42B 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 0 2B
23.065 cm-1 20 21 22 23 24 25
61.35 ±cm-1 60 61 62 63 64 65
20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B Harry Kroto 2004
20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 B = 16.863/ I I = 16.863/ B Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I = r2 Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 Ǻ (1.128 acc B value 1.921) Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004
Far infrared rotational spectrum of CO 5 10 J= 12 15 20B 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 B = 16.863/ I I = 16.863/ B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = 1.277 = r2 r = 1.277½ = 1.130 A (1.128 acc B value 1.921) Harry Kroto 2004
61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( Harry Kroto 2004
J= 12 61.5 cm-1 23.0 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 Harry Kroto 2004
5 10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 ( 50/3.85 = 12.99 = 13 so line at 50cm-1 is J=12 Harry Kroto 2004