1 / 1

Development of a Depth Gage Instrument for Orthopedic Surgery

Development of a Depth Gage Instrument for Orthopedic Surgery Brian Cost 1 , Justin Johnson 1 , Tyler Kibbee 1 Advisor: Derek Lewis 2 , Director of Engineering Vanderbilt University Engineering School , Biomedical Engineering Department OrthoHelix Surgical Designs, Inc. BACKGROUND.

amish
Download Presentation

Development of a Depth Gage Instrument for Orthopedic Surgery

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Development of a Depth Gage Instrument for Orthopedic Surgery Brian Cost1, Justin Johnson1, Tyler Kibbee1 Advisor: Derek Lewis2, Director of Engineering Vanderbilt University Engineering School, Biomedical Engineering Department OrthoHelix Surgical Designs, Inc. BACKGROUND MATERIALS & METHODS (cont.) RESULTS & DISCUSSION (cont.) • Project Description • Design, build and test an improved depth gage instrument for a variety of orthopedic surgeries • - Achieve bi-cortical fixation using a compression stopper • Achieve Ergonomic Grip • - Ease of use for surgeons • Design for Accuracy • - Proper depth and correct size screw used • Existing Industry Design • Inadequate measurements, poor repeatability • Unable to engage far cortex of bone consistently • Shaft warps with repeated use and abuse • Surgeons bend shaft in attempt to engage far cortex • Permanent damage to gage renders it useless • Company Background: OrthoHelix Surgical Designs, Inc. • Small biotech company started by Orthopedic surgeon • - 4 specialized product trays • MaxLock™ CalcLock™ • MaxTorque™ DRLock™ • Serves Niche Market • - Small bone surgery • - Hand and Foot specialists • The pull stick binds the silicon to the depth gage shaft. Ppull stick motion forces the silicon to compress and expand laterally. • Millimeter pull stick displacement requires great sensitivity. To prevent operator overextension, we added a switch. The switch design ensures repeatable specified displacement to obtain desired expanded silicon. • Our switch design optimizes ease of use. Circular switch motion allows individualized positioning for operator comfort. This way, the surgeon could use any desired finger to engage the switch. • Testing • I. Material Testing II. Failure Testing • a. Strength of silicon a. Pull-out Strength • b. Stainless steel b. Material Deformation • Market Analysis: • Projected Development Cost: • - Expended $10,995.89 • - Future Dev. $10,800.00 • - Total $21,795.89 • NPV for 20 yr. Horizon $413,689.00 • Production Cost (per gage) $152.00 • MSRP (per gage) $225.00 • Profit (per gage) $73.00 • Safety Issues • Silicon tip unexpected disassembly • Wire/switch joint wear • FDA Classification: Class I • Sec. 888.4300 Depth gauge for clinical use. • (a) Identification. A depth gauge for clinical use is a measuring device intended for various medical purposes, such as to determine the proper length of screws for fastening the ends of a fractured bone. • (b) Classification. Class I (general controls). The device is exempt from the pre-market notification procedures Fig. 4 (left): Switch in the disengaged position, allowing tip to relax. Fig. 5 (right): Switch in the engaged position, compressing tip into engaged position Fig. 9 (left): Overview of depth gage inserted in sawbone. Fig. 10 (below): Close-up of prototype shaft and silicon tip (NOTE: not to scale) MATERIALS & METHODS • Materials • SolidWorks, Computer • SLA printer, SLA devices • Saw bone models, Plates, Screws, Drill Bits, Drivers • Medical-grade Silicon, Stainless Steel Design • Reverse-engineered the existing depth gage to obtain a 3D model • Developed five potential ideas to expandable tip revision • Resulted in using a medical-grade silicon tip that expands similar to a wine bottle stopper • In order for tip to expand, the center of the gage body was hollowed out to make room for a pull stick RESULTS & DISCUSSION Comparison: Prototype vs. Existing Design Testing Results CONCLUSION • Design Motivation: • Improve accuracy of screw hole measurements to prevent patient discomfort and device failure • Improve surgeons ability to easily measure hole depth • Conclusions: • The design currently meets all of the specifications that we had set out to accomplish. • Future Directions: • Refine hollow shaft design • Improve switch design • Contract prototype manufacturing • Verification/Validation testing for FDA approval Fig. 6: From top to bottom; 30 mm, 50 mm existing gages, our prototype Fig. 1 (left): The tip in the unexpanded position. Fig. 2 (right): The tip in the expanded position. Fig. 7 (left): Prototype gage being tested on sawbone model in unexpanded position. Fig. 8 (right): Prototype gage in expanded position. REFERENCES R.D. Guyer. "United States Patent # 5,928,243: Pedicle probe and depth gage". Spinal Concepts Inc. July 27, 1999. D.A. Fischer. "United States Patent # 4,450,834: External fixation device". Ace Orthopedic Manufacturing Inc. May 29, 1984. M. Dace, B. Wilfong. United States Patent # 7,293,364: Measurement device". Warsaw Orthopedic, Inc. November 13, 2007 MSC Industrial Supply Company Website, Material Property Information. Silicon Azom.com The A to Z of Materials. Grade 420 Stainless Steel Fig. 3: Section view of depth gage depicting pull stick and switch mechanism.

More Related