1 / 26

Teaching Introductory Physics Courses at University of Minnesota

Teaching Introductory Physics Courses at University of Minnesota. Outline. Orientation goals, schedule and structure What physics classes for For whom? What’s important to teach? How should we teach it? What does a TA do within our course structure?. Orientation: Goals and Structure.

Download Presentation

Teaching Introductory Physics Courses at University of Minnesota

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teaching Introductory Physics Courses at University of Minnesota

  2. Outline • Orientation goals, schedule and structure • What physics classes for • For whom? • What’s important to teach? • How should we teach it? • What does a TA do within our course structure?

  3. Orientation: Goals and Structure • Goals: • To help you come up to speed in teaching/coaching • To give you some ideas about our teaching/coaching methods. • And convince enough of you enough about soundness of our approach so that you will do a good job and contribute to our education mission. • Structure: • Typically 2.5 hours in morning/afternoon covering: • Demonstration of how lab and discussion sections are structured. • Discussion about teaching/coaching methods • Practice coaching aspects of teaching • Reading and other assignments • To get you think about teaching/coaching physics

  4. History of TA orientation • Pat and Ken Heller re-structured Introductory Physics classes in terms of how the discussion and lab sessions are run. • Pat designed TA orientation so that TA’s know what to do in the discussion and lab sessions. • This is the first year that I am taking over the TA orientation. • I am not an expert in education, while Pat was. • I probably need frequent feedback from you to make the orientation as meaningful as possible.

  5. A few big questions (mine) • What do you want your students to take away from your class. • How do you feel about focusing on teaching/coaching problem solving? • Does it make sense to use a lot of Group learning to teach/coach problem solving? • What should you do as a TA to make the best out of our course structure? • Which Question do you most identify with? • Are there any other questions you have?

  6. What do you want your students to take away from your class?

  7. How do you feel about focusing on teaching/coaching problem solving?

  8. What did you find out on Monday from your advisers? • “thinking like physicists?” • Importance/frequencies of “problem solving” in professional physicist’s life.

  9. Martinez Article – problem solving • What did you find as his main points? • What struck you as obvious? • What was surprising to you, but you agree with? • What was surprising to you, and you are skeptical about its truthfulness and/or relevance. • What part you did not understand?

  10. Lecturer Student Mentor TA OUR MODEL FOR LARGE INTRODUCTORY COURSES Modeling Fading Coaching Outside Lecture Discussion Labs Topics Reading Team Problem Solving Procedures Homework Office Hours Demos Predictions Grading Discussion Lab Reports Context Rich Problems Cooperative Groups Questions Studying Exams Quizzes TAs Orientation Seminars

  11. How do we teach/coach problem solving? • Lectures (professor), • Examples of good problem solving techniques. • Explain physics concepts and • Apply to simple situations to help students develop physics intuition, etc. • Discussion sessions, • Students solve a problem while the TA coaches* them. - giving feedback to students, • giving a little push or some hints, if needed, to get students moving again when they are stuck. • manage less-than-optimally operating groups: • a group member not participating much, or • a member too dominating and not utilizing the intellectual resources within the group. *

  12. How do we teach/coach: Lab • very similar to the discussion sessions(time for students to solve problems.) • NOT meant to have students confirm fundamental physics laws. • Neither to teach students experimental techniques or details of errors analysis • Instead of the TA summarizing which groups’ solutions are right and which are wrong, they do experiments to see themselves if their solutions make sense against the results of the experiments. • TA’s role is very similar to that in the discussion session. • Additionally, you need to be cognizant to • Where the experiments tend to go wrong, • How computers tend to misbehave, • When and how you need to get help on malfunctioning equipment, etc. so that • students won’t justify wrong problem solutions with wrong experimental results and • avoid delay in their experiments due to equipment problems.

  13. Students’ time use and importance of TA’s work Component hours/week Mode Lecture 3 Individual Discussion/Labs 3 Collaborative groups Study/Homework 7-8 Individual 23% of course time spent in cooperative groups with TA

  14. Who are your students? • Algebra Based Physics– 300 students/term • Calculus Based Physics – 1200 students/term • Physics for Biology Majors – 500 students/term • Where are Physics majors? • More details follow

  15. Algebra-Based Physics • Pre-majors • Architecture 45% • Paramedical 26% • Physical therapy • dentistry • pharmacy • chiropractic • medical tech • veterinary • Agriculture / ecology 9% • Others 20% Freshman 30% Sophomores 30% Juniors30% Seniors 10% Male~50% Had Calculus 50% Had HS Chemistry 40% Had HS Physics 50%

  16. Calculus Based Physics Majors Engineering 75% Physics/Astro 5% Chemistry 6% Mathematics 5% Biology 9% Male 79% Had Calculus 80% Had HS Physics 87% Freshman 64% Sophomores 22% Juniors10% Seniors/high school, etc. Expect A 61% Work for money 53% Work more than 10 hrs/wk 25%

  17. Physics for Biology Majors Majors Biological Science49% Allied Health 19% Social Science7% Architecture3% Engineering 2% Other ~20% Pre-Med37% Freshman 7% Sophomore38% Junior 19% Senior 17% HS, etc Male39% Female 61% Expect A48% Work for money74% Work more than 10 hrs/wk50% Had U. Calculus71% (Had HS Calculus)50% Had HS Physics71%

  18. End

  19. What is your image of a teaching assistant (TA)? What does a TA do? What students does a TA work with? Formulate an answer individually. Share your answer with a partner. Listencarefully to your partner's answer. Createa new answer through discussion. What do you think is a TA?

  20. Work with groups of students; work with professors to grade and run course, make some decisions about content Help, guide students, be there to answer questions Bridge between teacher and student; help with homework One-on-one interaction with student’ explain to them Student more comfortable interacting with TA Learning to teach; master undergraduate material Share experience with students Evaluate his/her own education by reflecting on how students react to materials Work with students on personal problems Response from previous year (2004)

  21. Research-based Models for Teaching Introductory Courses • Teaching Physics with the Physics Suite by E. Redish • Recitations • Tutorials in Introductory Physics (University of Washington PER Group) page 146 • Activity Based Tutorials (University of Maryland PER Group) page 152 • Cooperative Problem Solving (University of Minnesota PER Group) page 158 • Labs • RealTime Physics (Tuffs University) page 164 • Cooperative Problem Solving Labs • Workshop and Studio Methods • Workshop Physics (Dickinson College) page 176 All models are effective in improving students’ understanding of physics

  22. Comparisons of effectiveness of various Models Relative % Gain on FCI UMd DC S/W RPI OSU UMn DC Jeff Saul, Karen Cummings

  23. Three hours each week (Monday, Tuesday, Wednesday), sometimes with informal cooperative groups. LECTURES One hour each Thursday -- groups practice using a logical problem-solving framework to solve problems. DISCUSSIONSECTION Two hours each week -- same groups practice using problem-solving framework to solve experimental problems. LABORATORY SECTION Friday -- usually a problem-solving quiz every three weeks with some multiple-choice conceptual questions. TESTS More on our model

  24. Example Quiz Questions SELECTED READING: • True or False.Clear, oral presentation of a concept is critical to overcoming alternative conceptions of students. • List 2 of the 3 sources of alternative conceptions as given by Wandersee, Mintzes, & Novak (1994). OTHER READING • Short Answer:A 50% appointment as a TA entails teaching how many discussion sessions and laboratory sessions each week? • Multiple Choice:About what percentage of the 1301 (calculus-based) students will be physics majors? (a)50% (d)5% (b)25% (e)0% (c)10%

  25. Hoursin Class TA Orientation Course(about 1.5 Education Credits) • Course structure, students & TA duties 9 • Alternative Conceptions of Students 3 • Teaching the Discussion Sessions Demonstration Discussion Session 3 Student Difficulties with Problem Solving 3 Characteristics of Good Problems 3 • Teaching the Problem-solving Labs Demonstration Lab 3 Writing Intensive Requirement 3 • Cooperative Groups and Problem Solving 3 • Peer Teaching of Labs/Discussion sessions 6 • Professionalism and Diversity Issues 3 • First Week Lesson Plans 3 Total 42 This has to be revised

  26. Teaching Seminars(about 1 education credit) Fall and Spring Semester Hoursin Class 1. Teaching Labs 18 2. Teaching Discussion Session 5 3. Grading and other Issues 5 28 I don’t understand this slide. You will sign up for 1 credit in the Fall and 2 credits in the Spring semester. Your grade for your work in this Orientation is counted in your grade for Spring Semester.

More Related