1 / 53

# The Co-Evolution of Calculators and High School Mathematics - PowerPoint PPT Presentation

The Co-Evolution of Calculators and High School Mathematics. Dan Kennedy Baylor School Chattanooga, TN. Change makes everyone less comfortable… ..but we change because we must. Calculators have changed quite a bit in the last 20 years. And so has high school mathematics. .

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'The Co-Evolution of Calculators and High School Mathematics' - alyn

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

The Co-Evolution of Calculators and High School Mathematics

Dan Kennedy Baylor SchoolChattanooga, TN

..but we change because we must.

Calculators have changed quite a bit in the last 20 years.

And so has high school mathematics.

If it was important for our parents, how can it be unimportant today?

But technology has been rendering our parents’ mathematics obsolete for decades.

For example, consider log tables.

Here is a timeless.1928 College Board mathematics achievement exam.

It looks a lot like today’s college placement tests.

But that is another talk.

You must find the angle of elevation of a balloon by “using logarithms.”

In the old days (e.g. World. 1970), any good algebra book had a table of 5-place logarithms to solve problems like #7…

…which was posed in 1928.

= 9.74959 – 10 World.

So log (tan θ) = 9.74959 – 10.

Now we go to a log trig table and look for 9.74959 in the “L Tan” column.

We find some success on the 29° page.

Since 9.74959 is two-thirds of the way between 9.74939 and 9.74969, we conclude that

θ = 29° 19 ' 40 "

But that was then. 9.74969, we conclude that

This is now:

And speaking of logarithms… 9.74969, we conclude that

A sobering thought: 9.74969, we conclude that

There are people walking the streets of your town right now who became convinced years ago that they could not “do math” -- because they could not “do” some things that we no longer teach today!

And who defines what it means to do math? 9.74969, we conclude that

MATH TEACHERS!

This a big difference between the ability to do mathematics and the ability to read!

Someone who can read this sentence knows how to read. 9.74969, we conclude that

Ontogeny recapitulates phylogeny.

What 9.74969, we conclude that does it mean to do mathematics?

The fact is that calculators keep 9.74969, we conclude that changing the definition of what it means to “do mathematics.”

They have done so before and they will surely do so again.

The main catalyst for change in high school mathematics in recent years has been technology.

The passing of log tables and slide rules are obvious consequences.

Other changes have been more subtle.

Graphing calculators have brought the recent years has been technology. power of visualization to young students of mathematics.

Bert Waits and Frank Demana

The AP Calculus Test Development Committee realized in 1989 that graphing calculators would change the way that students learn mathematics.

In 1990 they set a goal to require graphing calculators on the AP Calculus exams by 1995.

This was eventually to become the AP program’s finest hour.

1990: that graphing calculators would change the way that students learn mathematics. The College Board Calculator Impact Study

Nearly 8000 students from more than 400 schools field-tested new test items.

300 college mathematics departments were surveyed.

A diverse panel of mathematical experts was assembled to advise the AP committee.

1991: The Decision was Announced. that graphing calculators would change the way that students learn mathematics.

AP teachers would have four years to make the transition to Calculus for the New Century.

Incredibly, they actually did.

John Kenelly

Clemson University

Soon TICAP graduates were conducting AP workshops across the country, exposing more and more teachers to the power of visualization for teaching AP Calculus.

And many of these teachers taught other math courses.

Graphing calculators have liberated students, teachers, and real-world textbook problems from the tyranny of computation.

Graphing calculators have made more meaningful real-world textbook problems from the data analysis accessible to young students of mathematics

Graphing calculators have made real-world textbook problems from the word problems more accessible to students. The emphasis has shifted much more toward modeling.

Learn the mathematics in a context-free setting, then apply it to a section of “word problems” at the end of the chapter.

In 2000, the BC Calculus exam had two lengthy modeling problems about an amusement park.

They appeared consecutively.

Nobody complained

…much.

For teachers, these changes have not come easily. problems about an amusement park.

We have made changes, hopefully for the better.

You might think we could pause, reflect, and enjoy what we have accomplished.

But that is not how technology works!

Here are a few changes we have yet to make…

We need to stop thinking of a student’s mathematics education as a linear progression of skills that must be mastered.

Arithmetic

Fractions

Factoring

Equations

Inequalities

Geometry

Trigonometry

Proofs

Calculus

Statistics

Functions

If students who have not mastered our traditional mathematics skills can solve problems with technology, should it be our role as mathematics teachers to prevent them, or even discourage them, from doing so?

That does not count, Miss Nouveau. Put that thing away.

Dr. Retro, I’ve got it!

We ALL must teach fundamental mathemics skills to our students, who probably will not have mastered them.

Patiently. Casually. As a matter of course.

Mr. Oiler, if there are twice as many dogs as cats, doesn’t that mean that 2d = c?

Mr. Jones, if that is all you learned last year, you had better drop this course before it drops you.

Good question, Mr. Jones. Let’s see what would happen if there were 4 cats…

We must honestly confront the goals of our current mathematics curricula.

Just because it is good mathematics does not mean that we have to keep teaching it.

Nor is it necessary, advisable, or perhaps even possible to teach everything that is in your textbook.

Example: mathematics curricula.

AZ, OK and MA still have Cramer’s Rule in their state standards.

The purpose of Cramer’s Rule is to solve systems of linear equations using determinants.

Recall:

How can we possibly still mandate the teaching of Cramer’s Rule?

Example: mathematics curricula.

AL, OK, and CT want students to know how to compute a 3-by-3 determinant.

+

+

+

0

+ 2

+ 1

– (–4)

– (–4)

– 0

= 11

Compare this to: mathematics curricula.

So how do we justify teaching a meaningless computational trick that is ONLY good for computing 3-by-3 determinants?

It does not generalize to higher orders.

It does not even suggest anything important about how determinants work!

We should treat every mathematics course as a mathematics curricula. history course – at least in part.

We will probably always teach some topics for their historical value.

In fact, if you love Cramer’s Rule, go ahead and teach Cramer’s Rule.

Just admit to your students that you are teaching it for its historical value.

Do not make them use it to solve simultaneous linear equations!

Cramer Himself

We must honestly assess every advance in technology for its Cramer’s Rule. appropriate uses in the classroom.

As noted before, we must also determine what is meant by important mathematics.

Important?

Expendable?

The Skandu 2020: Cramer’s Rule.

It has the potential to scan any “standard” algebra textbook problem directly into its memory for an analysis of key instructional words, solve it with CAS, and display all possible solutions.

It will do the same for “standard” geometry textbook proofs.

The Skandu 2020

(Not its real name)

HA HA! I’m only kidding. Cramer’s Rule.

At least for now.

If there is no Skandu 2020 in our classrooms in five years, I doubt it will be because the design is impossible.

It will be because teachers do not feel that it would improve the teaching and learning of important mathematics.

This is still a co-evolution!

AP Calculus Calculator History Cramer’s Rule.

1983: Calculators allowed, not required

1985: Calculators disallowed again

1990: Calculator Impact Study

1993: Scientific calculators required

1995: Graphing calculators required

1997: Reformed course description

2000: Free-response split

AP Calculus Calculator Survey Results Cramer’s Rule. Which graphing calculator did you use?(percent of students)

AMC 12 / AMC 10: American Mathematics Competitions Cramer’s Rule.

Participation and Eligibility

Both AMC 10 and AMC 12 are 25-question, 75-minute multiple-choice contests administered in your school by you or a designated teacher. The AMC 12 covers the high school mathematics curriculum, excluding calculus. The AMC 10 covers subject matter normally associated with grades 9 and 10. To challenge students at all grade levels, and with varying mathematical skills, the problems range from fairly easy to extremely difficult. Approximately 12 questions are common to both contests.Students may not use calculators on the contests.

Meanwhile, the CAS conversations continue. Cramer’s Rule.

They are not just about technology, nor should they be. They are about the teaching and learning of mathematics.

Stay tuned. Be informed. Join the conversation.

It just might be time for another change!

[email protected] Cramer’s Rule.