application of modern tools for the thermo acoustic study of annular combustion chambers n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Application of modern tools for the thermo-acoustic study of annular combustion chambers PowerPoint Presentation
Download Presentation
Application of modern tools for the thermo-acoustic study of annular combustion chambers

Loading in 2 Seconds...

play fullscreen
1 / 129

Application of modern tools for the thermo-acoustic study of annular combustion chambers - PowerPoint PPT Presentation


  • 111 Views
  • Uploaded on

Application of modern tools for the thermo-acoustic study of annular combustion chambers. Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS. Introduction. A swirler (one per sector). Introduction. O ne swirler per sector. 10-24 sectors. Introduction.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

Application of modern tools for the thermo-acoustic study of annular combustion chambers


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. Application of modern tools for the thermo-acoustic study ofannular combustion chambers Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

    2. Introduction A swirler (one per sector) VKI Lecture

    3. Introduction One swirler per sector 10-24 sectors VKI Lecture

    4. Introduction Y. Sommerer & M. Boileau CERFACS VKI Lecture

    5. Introduction VKI Lecture

    6. SOME KEY INGREDIENTS • Flow physics • turbulence, partial mixing, chemistry, two-phase flow , combustionmodeling, heat loss, walltreatment, radiative transfer, … • Acoustics • compleximpedance, mean flow effects, acoustics/flame coupling, non-linearity, limit cycle, non-normality, mode interactions, … • Numerics • Low dispersive – low dissipative schemes, non linear stability, scalability, non-linear eigen value problems, … VKI Lecture

    7. PARALLEL COMPUTING • www.top500.org – june2010 70 000 processors or more 458Tflops or more VKI Lecture

    8. PARALLEL COMPUTING • www.top500.org – june2007 (3 years ago …) 10 000 processors or more (factor 7) 56Tflops or more (factor 8) VKI Lecture

    9. PARALLEL COMPUTING • Large scale unsteady computations require huge computing resources, an efficient codes … Speed up processors VKI Lecture

    10. PARALLEL COMPUTING VKI Lecture

    11. Thermo-acoustic instabilities Premixed gas The Berkeley backward facing step experiment. The Berkeley backward facing step experiment. VKI Lecture

    12. Thermo-acoustic instabilities • Self-sustained oscillations arising from the coupling between a source of heat and the acoustic waves of the system • Known since a very long time (Rijke, 1859; Rayleigh, 1878) • Not fully understood yet … • but surely not desirable … VKI Lecture

    13. Better avoid them … AIR LPP SNECMA LPP injector (SNECMA) FUEL VKI Lecture

    14. Modeling problem Wave equation Rayleigh criterion: Flame/acoustics coupling promotes instability if pressure and heat release fluctuations are in phase Flame/acoustics coupling COMBUSTION ACOUSTICS VKI Lecture

    15. A tractable 1D problem IMPOSEDPRESSURE IMPOSED VELOCITY FRESH GAS BURNT GAS FLAME n , t 0 L/2 L Kaufmann, Nicoud & Poinsot, Comb. Flame, 2002 VKI Lecture

    16. Equations 0 L CLASSICAL ACOUSTICS 2 wave amplitudes CLASSICAL ACOUSTICS 2 wave amplitudes VKI Lecture

    17. Uncoupled modes Coupled modes Dispersion relation • Solve the 4x4 homogeneous linear system to find out the 4 wave amplitudes • Consider Fourier modes • Condition for non-trivial (zero) solutions to exist VKI Lecture

    18. Stability of the coupled modes • Eigen frequencies • Steady flame n=0: • Asymptotic development for n<<1: Kaufmann, Nicoud & Poinsot, Comb. Flame, 2002 VKI Lecture

    19. Time lag effect • The imaginary part of the frequency is • Steady flame modes such that • The unsteady HR destabilizes the flame if unstable unstable unstable unstable VKI Lecture

    20. Time lag effect • The imaginary part of the frequency is • Steady flame modes such that • The unsteady HR destabilizes the flame if unstable unstable unstable VKI Lecture

    21. Uncoupled modes UNSTABLE Imaginary frequency (Hz) Unteady flame n=0.01 t=0.1 ms STABLE Real frequency (Hz) Numerical example UNSTABLE Steady flame Imaginary frequency (Hz) STABLE Real frequency (Hz) VKI Lecture

    22. OUTLINE • Computing the whole flow • Computing the fluctuations • Boundary conditions • Analysis of an annular combustor VKI Lecture

    23. OUTLINE • Computing the whole flow • Computing the fluctuations • Boundary conditions • Analysis of an annular combustor VKI Lecture

    24. BASIC EQUATIONSreacting, multi-species gaseous mixture VKI Lecture

    25. BASIC EQUATIONSenergy / enthalpy forms Sensible enthalpy of species k Specific enthalpy of species k Sensible enthalpy of the mixture Specific enthalpy of the mixture Total enthalpy of the mixture Total non chemical enthalpy of the mixture Total non chemical energy of the mixture E = H – p/r VKI Lecture

    26. BASIC EQUATIONSDiffusion velocity / mass flux Exact form Practical model Satisfies mass conservation VKI Lecture

    27. BASIC EQUATIONSStress and heat flux VKI Lecture

    28. Turbulence Turbulence is contained in the NS equations The flow regime (laminar vs turbulent) depends on the Reynolds number : Velocity Length scale viscosity laminar turbulent Re VKI Lecture

    29. RANS – LES - DNS LES DNS Streamwise velocity RANS time VKI Lecture

    30. About the RANS approach • Averages are not always enough (instabilities, growth rate, vortex shedding) • Averages are even not always meaningful T T2 Oscillating flame T2>T1 T1 T1 time Prob(T=Tmean)=0 !! VKI Lecture

    31. The basic idea of LES Resolved scales Modeled scales VKI Lecture 31

    32. LES equations • Assumes small commutation errors • Filtered version of the flow equations : VKI Lecture

    33. Laminar contributions • Assumes negligible cross correlation between gradient and diffusion coefficients: VKI Lecture

    34. Sub-grid scale contributions • Sub-grid scale stress tensor to be modeled • Sub-grid scale mass flux to be modeled • Sub-grid scale heat flux to be modeled VKI Lecture

    35. The Smagorinsky model • From dimensional consideration, simply assume: • The Smagorinsky constant is fixed so that the proper dissipation rate is produced, Cs = 0.18 VKI Lecture

    36. The Smagorinsky model • The sgs dissipation is always positive • Very simple to implement, no extra CPU time • Any mean gradient induces sub-grid scale activity and dissipation, even in 2D !! • Strong limitation due to its lack of universality. Eg.: in a channel flow, Cs=0.1 should be used No laminar-to-turbulent transition possible Solid wall VKI Lecture

    37. The Dynamic procedure (constant r) • By performing , the following sgs contribution appears • Let’s apply another filter to these equations • By performing , one obtains the following equations • From A and B one obtains A B VKI Lecture

    38. The dynamic Smagorinsky model • Assume the Smagorinsky model is applied twice • Assume the same constant can be used and write the Germano identity Cs dynamically obtained from the solution itself VKI Lecture

    39. The dynamic procedure • The dynamic procedure can be applied locally : • the constant depends on both space and time • good for complex geometries, • but requires clipping (no warranty that the constant is positive) VKI Lecture

    40. How often should we accept to clip ? Example of a simple turbulent channel flow Not very satisfactory, and may degrade the results % clipping Local Dynamic Smagorinsky Y+ Plane-wise Dynamic Smagorinsky U+ DNS Y+ VKI Lecture

    41. The global dynamic procedure • The dynamic procedure can also be applied globally: • The constant depends only on time • no clipping required, • just as good as the static model it is based on • Requires an improved time scale estimate VKI Lecture

    42. Sub-grid scale model Practically, eddy-viscosity models are often preferred The gold standard today is the Dynamic Smagorinskymodel Looking for an improved model for the time scale From the grid or filter width Dynamically Computed VKI Lecture

    43. Description of the s - model • Eddy-viscosity based: • Start to compute the singular values of the velocitygradient tensor (neither difficult nor expensive) Null for axi-symmetic flows Null for isotropic AND near-wall behavior is O(y3) !! Null for 2D or 2C flows Null only if gij = 0 VKI Lecture

    44. Sub-grid scale contributions • Sub-grid scale stress tensor • Sub-grid scale mass flux of species k and heat flux • In practice, constant SGS Schmidt and Prandtl numbers VKI Lecture

    45. Sub-grid scale heat release • The chemical source terms are highly non-linear (Arrhenius type of terms) • The flame thickness is usually very small (0.1 - 1 mm), smaller than the typical grid size Poinsot & Veynante, 2001 VKI Lecture

    46. The G-equation approach • The flame is identified as a given surface of a G field • The G-field is smooth and computed from • “Universal “ turbulent flame speed model not available … Poinsot & Veynante, 2001 VKI Lecture

    47. The thickened flame approach • From laminar premixed flames theory: • Multiplying a and dividing A by the same thickening factor F Poinsot & Veynante, 2001 VKI Lecture

    48. The thickened flame approach • The thickened flame propagates at the proper laminar speed but it is less wrinkled than the original flame: Total reaction rate R1 Total reaction rate R2 • This leads to a decrease of the total consumption: VKI Lecture

    49. The thickened flame approach • An efficiency function is used to represent the sub-grid scale wrinkling of the thickened flame • This leads to a thickened flame (resolvable) with increased velocity (SGS wrinkling) with the proper total rate of consumption • The efficiency function is a function of characteristic velocity and length scales ratios VKI Lecture

    50. The thickened flame approach • Advantages • finite rate chemistry (ignition / extinction) • fully resolved flame front avoiding numerical problems • easily implemented and validated • degenerates towards DNS: does laminar flames • But the mixing process is not computed accurately outside the reaction zone • Extension required for diffusion or partially premixed flames • Introduction of a sensor to detect the flame zone and switch the F and E terms off in the non-reacting zones VKI Lecture