infant nutrient needs n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Infant nutrient needs PowerPoint Presentation
Download Presentation
Infant nutrient needs

Loading in 2 Seconds...

play fullscreen
1 / 145

Infant nutrient needs - PowerPoint PPT Presentation


  • 127 Views
  • Uploaded on

Infant nutrient needs. Basis Approach Specific nutrients water energy protein fatty acids vitamin K Vitamin D Iron Fluoride. Basis of recommendations. Growth and development Preventing deficiencies Meeting nutrient requirements Physiology GI Renal Programming

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Infant nutrient needs' - alegria


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
infant nutrient needs
Infantnutrient needs

Basis

Approach

Specific nutrients

water

energy

protein

fatty acids

vitamin K

Vitamin D

Iron

Fluoride

basis of recommendations
Basis of recommendations
  • Growth and development
    • Preventing deficiencies
    • Meeting nutrient requirements
  • Physiology
    • GI
    • Renal
  • Programming
    • Preventing chronic conditions
    • Optimizing health through lifecycle
goals and objectives
Goals and Objectives
  • Optimal growth and development
  • Safety
  • Individual health
  • Population Health
  • Prevention and Chronic Illness
challenges
Challenges
  • Strength of Evidence
  • Individual vs. population
    • Public health approach
    • Individual genetics
    • Maternal-infant dyad
      • In utero endowment
      • Beliefs, values, choices
      • Relationship/nurture
    • Environmental factors
1940 s
1940’s
  • Rickets (D)
  • Pellagra (Niacin)
  • Scurvy (C)
  • Beriberi (Thiamin)
  • Xeropthalmia (A)
  • Goiter (Iodine)
united nations 5 th report on world nutrition march 20041
United Nations 5th report on World Nutrition: March 2004
  • Vitamin A deficiency
    • 140 million preschoolers
    • 7 million pregnant women
  • Iron Deficiency
    • One of most prevalent
    • 4-5 billion affected
causes
Causes

Nutrition - Disease

Access

Food

Health Care

Environment

Economics

Education

at birth
At Birth
  • Gut of the newborn is faced with the formidable task of passing, digesting, and absorbing large quantities of intermittent boluses of milk
  • Comparable feeds per body weight for adults would be 15 to 20 L
  • Enzymes for digestion of macronutrients
renal
Limited ability to concentrate urine in first year due to immaturities of nephron and pituitary

Potential Renal solute load determined by nitrogenous end products of protein metabolism, sodium, potassium, phosphorus, and chloride.

Renal
programming by early diet
Nutrient composition in early diet may have long term effects on GI function and metabolism

Animal models show that glucose and amino acid transport activities are programmed by composition of early diet

Animals weaned onto high CHO diet have higher rates of glucose absorption as adults compared to those weaned on high protein diet

Barker Hypothesis:

Association between BMI and chronic disease: HTN and cardiovascular, SGA/IUGR

Programming by Early Diet
nutrients
Nutrients
  • Guidelines
  • Recommendations
  • Education
individual requirements
Individual Requirements
  • Genetics
  • Adaptation
  • Environment
  • Behavior/activity
  • Choices, access, resources
  • other
approaches to estimating nutrient requirements
Approaches to Estimating Nutrient Requirements
  • Direct experimental evidence (ie protein and amino acids)
  • Extrapolation from experimental evidence relating to human subjects of other age groups or animal models
    • ie thiamin--related to energy intake .3-.5 mg/1000 kcal
  • Breast milk as gold standard (average [] X usual intake)
  • Metabolic balance studies (ie protein, minerals)
  • Clinical Observation (eg: manufacturing errors B6, Cl)
  • Factorial approach
  • Population studies
recommendations guidelines
Recommendations/guidelines
  • DRI: Dietary Reference Intakes
    • AI
    • UL
    • EER
  • AAP
  • Bright Futures
  • Start Healthy feeding guidelines
slide18
DRI: Dietary Reference Intakes

periodically revised recommendations (or guidelines) of the National Academy of Sciences

quantitative estimates of nutrient intakes for planning and assessing diets for healthy people

AI: Adequate Intake

UL: Tolerable Upper Intake Level

EER: Estimated Energy Requirement

dri s for infants
DRI’s for infants
  • Macronutrients based on average intake of breast milk
    • Protein less than earlier RDA
  • AAP Recommendations
    • Vitamin D: 200 IU supplement for breastfed infants and infants taking <500 cc infant formula
    • Iron: Iron fortified formula (4-12 mg/L), Breastfed Infants supplemented 1mg/kg/d by 4-6 months
water1
Water
  • Water requirement is determined by:
    • water loss
      • evaporation through the skin and respiratory tract (insensible water loss)
      • perspiration when the environmental temperature is elevated
      • elimination in urine and feces.
    • water required for growth
    • solutes derived from the diet
water2
Water
  • Water lost by evaporation in infancy and early childhood accounts for more than 60% of that needed to maintain homeostasis, as compared to 40% to 50% later in life
  • NAS recommends 1.5 ml water per kcal in infancy.
water3
Water
  • Individual needs
  • Renal concentrating ability
  • Solute in diet
  • Health
  • environment
water4
Water
  • Water balance
    • RSL in diet
    • Water in
    • Water out
    • Renal concentrating ability
renal solute load
Renal solute load
  • Samuel Foman J Pediatrics Jan 1999 134 # 1 (11-14)
  • RSL is important consideration in maintaining water balance:
      • In acute febrile illness
      • Feeding energy dense formulas
      • Altered renal concentrating ability
      • Limited fluid intake
slide27
Water vs fluid
  • Concentrating formula decreases free water and increases RSL
  • What is the % water in 20 kcal/oz infant formula?
    • 90%
    • To achieve 100 ml/kg/d needs to consume at least 110 cc/kg/d
energy requirements
Energy Requirements
  • Higher than at any other time per unit of body weight
  • Highest in first month and then declines
  • High variability - SD in first months is about 15 kcal/kg/d
  • Breastfed infants many have slighly lower energy needs
  • RDA represents average for each half of first year
energy requirements cont
Energy Requirements, cont.
  • RDA represents additional 5% over actual needs and is likely to be above what most infants need.
  • Energy expended for growth declines from approximately 32.8% of intake during the first 4 months to 7.4% of intake from 4 to 12 months
slide33
EER
  • 0-3 months (89 x wt -100) + 175
  • 4-6 months (89 x wt -100) + 56
  • 7-12 months (89 x wt -100) + 22
  • 13-35 months (89 x wt -100) + 20
  • Equations for older children factor in weight, height and physical activity level (PAL)
protein
Protein
  • Increases in body protein are estimated to average about 3.5 g/day for the first 4 months, and 3.1 g/day for the next 8 months.
  • The body content of protein increases from about 11.0% to 15.0% over the first year
essential fatty acids
Essential Fatty Acids
  • The American Academy of Pediatrics and the Food and Drug Administration specify that infant formula should contain at least 300 mg of linoleate per 100 kilocalories or 2.7% of total kilocalories as linoleate.
essential fatty acids1
Essential Fatty Acids
  • The American Academy of Pediatrics and the Food and Drug Administration specify that infant formula should contain at least 300 mg of linoleate per 100 kilocalories or 2.7% of total kilocalories as linoleate.
lcpufa

LCPUFA

DHA and ARA

lcpufa background1
LCPUFA: Background
  • Ability to synthesize 20 C FA from 18 C FA is limited.
  • n-3 and n-6 fatty acids compete for enzymes required for elongation and desaturation
  • Human milk reflects maternal diet, provides AA, EPA and DHA
  • n-3 important for neurodevelopment, high levels of DHA in neurological tissues
  • n-6 associated with growth & skin integrity
slide46

Formula supplementation with long-chain polyunsaturated fatty acids: are there developmental benefits? Scott et al. Pediatrics, Nov. 1998.

  • RCT, 274 healthy full term infants
  • Three groups:
    • standard formula
    • standard formula with DHA (from fish oil)
    • formula with DHA and AA (from egg)
  • Comparison group of BF
outcomes at 12 and 14 months
Outcomes at 12 and 14 months
  • No significant differences in Bayley, Mental or Psychomotor Development Index
  • Differences in vocabulary comprehension across all categories and between formula groups for vocabulary production.
conclusion
Conclusion

“We believe that additional research should be undertaken before the introduction of these supplements into standard infant formulas.”

slide51
PUFA Status and Neurodevelopment: A summary and critical analysis of the literature(Carlson and Neuringer, Lipids, 1999)
  • In animal studies use deficient diets through generations - effects on newborn development may be through mothering abilities.
  • Behaviors of n-3 fatty acid deficient monkeys: higher frequency of stereotyped behavior, locomotor activity and behavioral reactivity
slide52

Efficacy and safety of docosahexaenoic acid and arachidonic acid addition to infant formulas: can one buy better vision and intelligence?(Koo. J Am Coll Nutr. 2003 Apr;22(2):101-7)

  • “Functional benefits in particular visual or neural development from IF containing LCPUFA remains controversial.”
  • “Potential for excessive and/or imbalanced intake of n-6 and n-3 fatty acids exists with increasing fortification of LCPUFA to infant foods other than IF.”
formula supplemented with dha ara a critical review of the research wright et al 2006
Formula Supplemented with DHA & ARA: A Critical Review of the Research(Wright et al, 2006)
  • 10 RCTs from 1997-2003 of variable quality
  • Considered the strength of each study by looking at indices of research quality.
wright et al cont
Wright et al, cont.
  • Growth (7 studies)
    • no differences in weight, length, OFC
  • FA in blood (7 studies)
    • DHA & ARA higher with supplementation
    • those supplemented with only DHA had lower levels of ARA than those on standard formula
    • Supplementation with LCPUFA for only 17 weeks lead to higher EFA levels at 1 year of age
wright et al cont1
Wright et al, cont.
  • Vision (6 trials)
    • 2 found better visual function with LCPUFA , 4 did not
  • Neurodevelopment
    • 1 of 4 found positive results on Bayley Scales of Infant Development II
    • 2 of 5 found positive information processing/IQ/cognitive effects
wright et al cont2
Wright et al, cont
  • Conclusions
    • No detrimental effects found
    • Possibly a small improvement in visual acuity, but significance of this small effect in global development is questionable
    • “thoughtful consideration is advised before recommending more expensive formula for term infants.”
longchain polyunsaturated fatty acid supplementation in infants born at term cochrane 2001
Longchain polyunsaturated fatty acid supplementation in infants born at term(Cochrane, 2001).
  • At present there is little evidence from randomised trials of LCPUFA supplementation to support the hypothesis that LCPUFA supplementation confers a benefit for visual or general development of term infants.
  • A beneficial effect on information processing is possible but larger studies over longer periods are required to conclude that LCPUFA supplementation provides a benefit when compared with standard formula.
  • Data from randomised trials do not suggest that LCPUFA supplements influence the growth of term infants
vitamins and minerals
Vitamins and Minerals
  • Need for minerals and vitamins increased per kg compared to adults:
    • growth rates
    • mineralization of bone & increases in bone length
    • Increased blood volume
    • energy, protein, and fat intakes
vitamins and minerals1
Vitamins and Minerals
  • Focus on nutrients with controversies and/or recent research:
    • Vitamin K
    • Vitamin D
    • Iron
    • Fluoride
vitamin k
Vitamin K
  • Lack of specific information regarding an infant’s requirement
  • Vitamin K concentration of breastmilk is low and for the breastfeeding infant a deficiency state has been described
  • No “gold standard” available
vitamin k1
Vitamin K
  • DRI for infants 2-2.5 ug/day
  • Formula provides 7-9 ug/kg/d
  • BM contains < 10 ug/L
  • Hemorrhagic disease of the Newborn…Vitamin K deficiency
  • Prophylaxis: 1 mg Vitamin K IM for all newborn infants
vitamin k controversy
Vitamin K Controversy
  • Adequacy of BM
  • Maternal Diet and Vitamin A content of BM
  • ? Significance/prevalence of hemorrhagic disease of newborn
  • IM injections of all newborns
vitamin k deficiency definitions aap 2003
Vitamin K Deficiency- definitions – AAP, 2003

* Formerly known as classic hemorrhagic disease of the newborn

incidence of vkdb
Incidence of VKDB
  • Early: 0.25%–1.7% incidence
  • Late:
    • No vitamin K prophylaxis: 4.4 to 7.2 per 100,000 births
    • Single oral vitamin K prophylaxis:1.4 to 6.4 per 100 000 births
    • IM vitamin K prophylaxis: 0
danielson et al arch dis child 2004 89 f546 550
Danielson et al Arch Dis Child 2004 89:F546-550
  • Late onset vitamin K deficient bleeding in infants who did not receive prophylactic vitamin K at birth in Hanoi province
    • Incidence: 116 per 100,000 births
    • Higher in rural areas
    • 9% mortality
    • 42% impaired neurodevelopmental status at discharge in survivors
incidence
Incidence
  • Netherlands 2005: 3.2 per 100,000 births
  • Canada 2004: 0.45 per 100,000 births
    • Conclude low incidence associated with current practice of prophylactic Vitamin K at birth
closing the loophole midwives and the administration of vitamin k in the neonate
Closing the Loophole:Midwives and the Administration of Vitamin K in the Neonate
  • Adame and Carpenter J Pediatr 2009 154:769-771
  • Case Report of a previously healthy, exclusively breastfed 6 week old infant delivered by a midwife on the south Texas border. Did not receive Vitamin K at birth. Admitted with severe intracranial hemorrhage, cooagulopathy, and seizures, unresponsive, pupils fixed and dialated
cochran prophylactic vitamin k for preventing haemorrhagic disease in newborn infants
Cochran Prophylactic Vitamin K for preventing haemorrhagic disease in newborn infants
  • Vitamin K deficiency can cause bleeding in an infant in the first weeks of life. This is known as Haemorrhagic Disease of the Newborn (HDN) or Vitamin K Deficiency Bleeding (VKDB).
cochran
Cochran
  • Vitamin K is necessary for the synthesis of coagulation factors II (prothrombin), VII, IX and X in the liver.
  • In the absence of vitamin K the liver will synthesize inactive precursor proteins, known as PIVKA’s (proteins induced by the absence of vitamin K).
  • HDN is caused by low plasma levels of the vitamin K-dependent clotting factors. In the newborn the plasma concentrations of these factors are normally 30-60% of those of adults. They gradually reach adult values by six weeks of age
cochran1
Cochran
  • HDN is divided into three categories: early, classic and late HDN. Early HDN occurs within 24 hours post partum and falls outside the scope of this review.
  • Classic HDN occurs on days 1-7. Common bleeding sites are gastrointestinal, cutaneous, nasal and from a circumcision. Late HDN occurs from week 2-12.
  • The most common bleeding sites in this latter condition are intracranial, cutaneous, and gastrointestinal (Hathaway 1987 and von Kries 1993).
cochran2
Cochran
  • The risk of developing vitamin K deficiency is higher for the breastfed infant because breast milk contains lower amounts of vitamin K than formula milk or cow's milk
cochran3
Cochran
  • In different parts of the world, different methods of vitamin K prophylaxis are practiced.
the problem
The problem:
  • Oral vitamin K has effect similar to IM in preventing early VKDB, but not in preventing late VKDB
cochran4
Cochran
  • Oral Doses:
  • The main disadvantages are that the absorption is not certain and can be adversely affected by vomiting or regurgitation. If multiple doses are prescribed the compliance can be a problem
cochran5
Cochran
  • I.M. prophylaxis is more invasive than oral prophylaxis and can cause a muscular haematoma. Since Golding et al reported an increased risk of developing childhood cancer after parenteral vitamin K prophylaxis (Golding 1990 and 1992) this has been a reason for concern .
cochrane conclusions 2000
Cochrane Conclusions, 2000
  • A single dose (1.0 mg) of intramuscular vitamin K after birth is effective in the prevention of classic HDN.
  • Either intramuscular or oral (1.0 mg) vitamin K prophylaxis improves biochemical indices of coagulation status at 1-7 days.
  • Neither intramuscular nor oral vitamin K has been tested in randomized trials with respect to effect on late HDN.
  • Oral vitamin K, either single or multiple dose, has not been tested in randomized trials for its effect on either classic or late HDN.
slide78

Brousson and Klien, Controversies surrounding the administration of vitamin K to newborns; a review. CMAJ. 154(3):307-315, February 1, 1996.

  • Study selection: Six controlled trials met the selection criteria: a minimum 4-week follow-up period, a minimum of 60 subjects and a comparison of oral and intramuscular administration or of regimens of single and multiple doses taken orally. All retrospective case reviews were evaluated. Because of its thoroughness, the authors selected a meta-analysis of almost all cases involving patients more than 7 days old published from 1967 to 1992. Only five studies that concerned safety were found, and all of these were reviewed
slide80

Brousson and Klien, Controversies surrounding the administration of vitamin K to newborns; a review. CMAJ. 154(3):307-315, February 1, 1996.

  • Data synthesis: Vitamin K (1 mg, administered intramuscularly) is currently the most effective method of preventing HDNB. The previously reported relation between intramuscular administration of vitamin K and childhood cancer has not been substantiated. An oral regimen (three doses of 1 to 2 mg, the first given at the first feeding, the second at 2 to 4 weeks and the third at 8 weeks) may be an acceptable alternative but needs further testing in largeclinical trials.
slide81

Brousson and Klien, Controversies surrounding the administration of vitamin K to newborns; a review. CMAJ. 154(3):307-315, February 1, 1996

  • Conclusion: There is no compelling evidence to alter the current practice of administering vitamin K intramuscularly to newborns.
aap recommendations
AAP Recommendations

1. Vitamin K1 should be given to all newborns as a single, intramuscular dose of 0.5 to 1 mg.

2. Further research on the efficacy, safety, and bioavailability of oral formulations of vitamin K is warranted.

aap recommendations1
AAP Recommendations

3. Health care professionals should promote awareness among families of the risks of late VKDB associated with inadequate vitamin K prophylaxis from current oral dosage regimens, particularly for newborns who are breastfed exclusively

cochran6
Cochran
  • HDN is divided into three categories: early, classic and late HDN. Early HDN occurs within 24 hours post partum and falls outside the scope of this review.
  • Classic HDN occurs on days 1-7. Common bleeding sites are gastrointestinal, cutaneous, nasal and from a circumcision. Late HDN occurs from week 2-12.
  • The most common bleeding sites in this latter condition are intracranial, cutaneous, and gastrointestinal (Hathaway 1987 and von Kries 1993).
vitamin d1
Vitamin D
  • Role
  • Source
    • Dietary
    • sunlight
  • Deficiency
    • Rickets
slide87
Role
  • Enhances intestinal absorption of Ca
  • Increase tubular resorption of Ph
  • Mediation of recycling of Ca and Ph for bone growth and remodeling
  • Sterol hormone
    • Deficiency: Rickets
slide88
Role
  • Extraskeletal effects of Vitamin D
    • Modulates B and T Lymphocyte fx and deficiency may be associated with autoimmune diseases (diabetes, MS associations)
    • Regulation of cell growth (assoc with breast, prostrate, and colon cancer)
prevalence
Prevalence
  • Thought to be disease of past (prior to 1960’s)
    • Disappeared secondary to recognition of role of sunlight, fortification of milk, use of multivitamins, AAPCON recommendation for 400 IU supplementation of infants
prevalence1
Prevalence
  • Increased incidence and case reports 1970’2
  • No national data in US
    • Georgia 1997-99: 9 per million hospitalized children
    • National Hospital Discharge Survey: 9 per million
    • Pediatric Research in Office Setting (AAP):23-32 hospitalized cases reported 1999-2000
prevalence2
Prevalence

Literature Review

  • 13 articles published between 1996-2001
  • 122 case reports

Published cases of nutritional ricketts in the United States

-65 cases between 1975-1985

-166 cases between 1986-2003

vitamin d deficiency in breastfed infants in iowa
Vitamin D Deficiency in Breastfed infants in Iowa
  • Zeigler et al Pediatrics 2006;118;603-610
  • N= 84
  • Prevalence of Vitamin D deficiency was 10%. Occurred exclusively in unsupplemented infants, more common in winter, and infants with dark skin
prevention of rickets and vitamin d deficiency new guidelines for vitamin d intake

Prevention of Rickets and Vitamin D Deficiency: New Guidelines for Vitamin D Intake

PEDIATRICS Vol. 111 No. 4 April 2003, pp. 908-910

vitamin d and sunlight
Vitamin D and Sunlight
  • Vitamin D requirements are dependenton the amount of exposure to sunlight.
  • Dermatologists recommend caution with sun exposure.
    • Sunscreens markedly decrease vitamin D production in the skin
    • Decreased sunlight exposure occurs during the winter and other seasons and when sunlight is attenuated by clouds, air pollution, or the environment
    • AAP recommends against exposing infants < 6 months to direct sun
breastfeeding and vitamin d
Breastfeeding and Vitamin D
  • Breast milk has < 25 IU/L Recommended adequate intake can not be met with breast milk alone
  • Formerly stated that needs could be met with sun exposure, but now, due to cancer concerns recommend against this
vitamin d recommendations
Vitamin D Recommendations
  • Before 2003 AAP recommended 10 mg (400 IU) per day for breastfeed infants
  • 2003: American Academy of Pediatrics recommends supplements of 5 mg (200 IU) per day for all infants as recommended in DRIs.
  • 10/14/2008: AAP updates guidelines for vitamin D intake for infants, children, and teens to be published in Nov 5th ed Pediatrics
    • 400 IU per day intake of vitamin D beginning in first few days of life
formulas
Formulas
  • if an infant is ingesting at least 500 mL per day of formula (vitamin D concentration of 400 IU/L), he or she will receive the recommended vitamin D intake of 200 IU per day.
  • If intake is less than 500 ml recommend additional supplement of vitamin D
summary of aap recommendations 2003
Summary of AAP Recommendations, 2003
  • All breastfed infants unless they are weaned to at least 500 mL per day of vitamin D-fortified formula or milk.
  • All nonbreastfed infants who are ingesting less than 500 mL per day of vitamin D-fortified formula or milk.
  • Children and adolescents who do not get regular sunlight exposure, do not ingest at least 500 mL per day of vitamin D-fortified milk, or do not take a daily multivitamin supplement containing at least 200 IU of vitamin D.
aap recommendations for vitamin d
AAP Recommendations for Vitamin D
  • 2008
    • Intake of 400 IU beginning in first few days of life
      • Supplement breastfed, partially breastfed, infants and children consuming less than 1 liter formula or vitamin D fortified whole milk
slide101
Iron
  • Function
  • Source
    • Formula, breast milk, other foods
    • Bioavailability:
      • Breast milk
      • Soy formula
  • Deficiency
    • Anemia
slide102
Iron
  • Biological function
    • Oxygen transport primarily in hemoglobin
    • Component of other proteins including cytochrome a, b, c, and cytochrome oxidase essential for electron transport and cellular energetics
slide103
Iron
  • Iron absorption from soy formulas is less
  • Greater bioavailability of iron in breast milk
iron deficiency
Iron deficiency
  • Anemia
    • Inadequate iron in diet
    • Loss
        • GI bleeding, cows milk proteins, infectious agents
    • Other causes of anemia
      • Genetics
      • Lead
      • Other nutrients
slide107

Estimated to affect 2.4 million U.S. children

  • Associated with behavioral and cognitive delays
slide108

Iron Deficiency in Early Childhood in the United States: Risk Factors and Raciel/Ethnic DisparitiesBrotanek et al Pediatrics 2007 120:568-575

  • Analysis of National Health and Nutrition Examination Survey IV children 1-3 years to identify prevalence and risk for iron deficiency anemia
  • N= 1641
  • Prevalence:
    • Hispanics 12%,
    • Whites 6%
    • Blacks 6%
    • Overweight 20%
    • At risk for overweight 8%
    • Normal weight 7%
iron deficiency in breastfeeding
Iron Deficiency in Breastfeeding
  • At 4 to 5 months prevalence of low iron stores in exclusively breastfed infants is 6 - 20%.
  • A higher rate (20%-30%) of iron deficiency has been reported in breastfed infants who were not exclusively breastfed
  • The effect of iron obtained from formula or beikost supplementation on the iron status of the breastfed infant remains largely unknown and needs further study.
iron deficiency anemia
Iron Deficiency Anemia
  • Impact on social, neurobehavioral and sleep
    • Peirano et al: Sleep and Neurofunction Throughout Child development: Lasting Effects of Early Iron Deficiency J Ped Gastroenterology and Nutr 2009 48:S8-S15
    • Lozoff et al: Dose-Response Relationships between Iron deficiency with or without anemia and Infant Social-emotional Behavior J Pediatr 2008 152:696-702
peirano
Peirano
  • Slower neurotransmission in auditory and visual systems
  • Different motor activity patterning sleep-waking and sleep state organization
  • Alterations in behavioral and cognitive function
lozoff
Lozoff
  • N=77
  • “Infant social-emotional behavior appears to be adversely affected by iron deficiency with or without anemia”
    • Shyness, orientation engagement, soothability
other causes of anemia
Other Causes of Anemia
  • Jones et al Hidden Threats: Lead Poisoning From Unusual Sources Pediatrics 1999 104(1223-1225)
  • Jones et al Trends in Blood Lead Levels and Blood Lead Testing Among US Children Aged 1-5 years Pediatrics 2009 123 (e376-e385)
iron fortification of infant formulas pediatrics july 1999 v104 i1 p119
Iron Fortification of Infant FormulasPediatrics, July 1999 v104 i1 p119
  • During the first 4 postnatal months, excess fetal red blood cells break down and the infant retains the iron. This iron is used, along with dietary iron, to support the expansion of the red blood cell mass as the infant grows. The estimated iron requirement of the term infant to meet this demand and maintain adequate stores is 1 mg/kg per day.
  • Infants born prematurely and those born to poorly controlled diabetic mothers are at higher risk of iron deficiency
iron fortification of formula
Iron Fortification of Formula
  • “The increased use of iron-fortified infant formulas from the early 1970s to the late 1980s has been a major public health policy success. During the early 1970s, formulas were fortified with 10 mg/L to 12 mg/L of iron in contrast with nonfortified formulas that contained less than 2 mg/L of iron. The rate of iron-deficiency anemia dropped dramatically during that time from more than 20% to less than 3%.”
aap iron recommendations
AAP Iron Recommendations

1. In the absence of underlying medical factors (which are rare), human milk is the preferred feeding for all infants.

2. Infants who are not breastfed or are partially breastfed should receive an iron-fortified formula (containing between 4.0-12 mg/L of iron) from birth to 12 months. Ideally, iron fortification of formulas should be standardized based on long-term studies that better define iron needs in this range

foman on iron 1998
Foman on Iron - 1998
  • Proposes that breastfed infants should have supplemental iron (7 mg elemental) starting at 2 weeks.
  • Rational:
    • some exclusively breastfed infants will have low iron stores or iron deficiency anemia
    • Iron content of breast milk falls over time
    • animal models indicate that deficits due to Fe deficiency in infants may not be recovered when deficiency is corrected.
aap iron recommendations1
AAP Iron Recommendations

1. In the absence of underlying medical factors (which are rare), human milk is the preferred feeding for all infants.

2. Infants who are not breastfed or are partially breastfed should receive an iron-fortified formula (containing between 4.0-12 mg/L of iron) from birth to 12 months. Ideally, iron fortification of formulas should be standardized based on long-term studies that better define iron needs in this range

aap iron recommendations2
AAP Iron Recommendations

3. The manufacture of formulas with iron concentrations less than 4.0 mg/L should be discontinued. If these formulas continue to be made, low-iron formulas should be prominently labeled as potentially nutritionally inadequate with a warning specifying the risk of iron deficiency. These formulas should not be used to treat colic, constipation, cramps, or gastro esophageal reflux.

aap iron recommendations3
AAP Iron Recommendations

4. If low-iron formula continues to be manufactured, iron-fortified formulas should have the term "with iron" removed from the front label. Iron content information should be included in a manner similar to all other nutrients on the package label.

aap iron recommendations4
AAP Iron Recommendations
  • Parents and health care clinicians should be educated about the role of iron in infant growth and cognitive development, as well as the lack of data about negative side effects of iron and current fortification levels.
foman on iron 19981
Foman on Iron - 1998
  • Proposes that breastfed infants should have supplemental iron (7 mg elemental) starting at 2 weeks.
  • Rational:
    • some exclusively breastfed infants will have low iron stores or iron deficiency anemia
    • Iron content of breast milk falls over time
    • animal models indicate that deficits due to Fe deficiency in infants may not be recovered when deficiency is corrected.
fluoride
Fluoride
  • Fluoride and dental caries
    • At beginning of 20th century dental caries was common with extraction only treatment available
    • Failure to meet minimum standards of 6 opposing teeth was common cause of rejection from military service in WWI and WWII
fluoride1
Fluoride
  • 1901 Dr. Frederick S Mckay noted mottled teeth (fluorosis) in practice in Colo Springs Colo that were resistent to decay
  • 1909 Dr. FC Robertson noted same mottling in his area of practice after a new well dug
    • Believed was due to something in the water
fluoride2
Fluoride
  • 1945 study was conducted in 4 city pairs (Michigan, NY, Illinois, Ontario)
  • Followed 13-15 years
  • 50-60% reduction in dental caries
fluoride3
Fluoride
  • Proposed mode of action
    • Promotes remineralization of areas of cariogenic lesions
    • Increases resistance to acid demineralization
    • Interferes with formation and function of plaque forming microorganisms
    • Improves tooth morphology
fluoride4
Fluoride
  • Concerns
    • Excess
    • Fluorosis
    • Cancer
    • other
fluoride5
Fluoride
  • Fluoride Recommendations were changed in 1994 due to concern about fluorosis.
  • Breast milk has a very low fluoride content.
  • Fluoride content of commercial formulas has been reduced to about 0.2 to 0.3 mg per liter to reflect concern about fluorosis.
  • Formulas mixed with water will reflect the fluoride content of the water supply. Fluorosis is likely to develop with intakes of 0.1 mg/kg or more.
fluoride cont
Fluoride, cont.
  • Fluoride adequacy should be assessed when infants are 6 months old.
  • Dietary fluoride supplements are recommended for those infants who have low fluoride intakes.
feeding guidelines and recommendations
Feeding Guidelines and Recommendations
  • Public health policy
  • Health promotion
  • Prevention
examples
Examples
  • Transition
  • Supplements to breast milk
  • Safety
  • Allergy prevention
  • Dental health
  • other
some issues foman 1993
Some Issues: Foman, 1993
  • “For the infant fed an iron-fortified formula, consumption of beikost is important in the transition from a liquid to a nonliquid diet, but not of major importance in providing essential nutrients.”
  • Breastfed infants: nutritional role of beikost is to supplement intakes of energy, protein, perhaps Ca and P.
  • Nutrient content of breast milk is a compromise between maternal and infant needs. Most human societies supplement breast milk early in life.
early childhood caries
Early Childhood Caries
  • AKA Baby Bottle Tooth Decay
  • Rampant infant caries that develop between one and three years of age
early childhood caries etiology
Early Childhood Caries: Etiology
  • Bacterial fermentation of cho in the mouth produces acids that demineralize tooth structure
  • Infectious and transmissible disease that usually involves mutans streptococci
  • MS is 50% of total flora in dental plaque of infants with caries, 1% in caries free infants
early childhood caries etiology1
Early Childhood Caries: Etiology
  • Sleeping with a bottle enhances colonization and proliferation of MS
  • Mothers are primary source of infection
  • Mothers with high MS usually need extensive dental treatment
early childhood caries pathogenesis
Early Childhood Caries: Pathogenesis
  • Rapid progression
  • Primary maxillary incisors develop white spot lesions
  • Decalcified lesions advance to frank caries within 6 - 12 months because enamel layer on new teeth is thin
  • May progress to upper primary molars
early childhood caries prevalence
Early Childhood Caries: Prevalence
  • US overall - 5%
  • 53% American Indian/Alaska Native children
  • 30% of Mexican American farm workers children in Washington State
  • Water fluoridation is protective
  • Associated with sleep problems & later weaning
early childhood caries cost
Early Childhood Caries: Cost
  • $1,000 - $3,000 for repair
  • Increased risk of developing new lesions in primary and permanent teeth
early childhood caries prevention
Early Childhood Caries: Prevention
  • Anticipatory Guidance:
    • importance of primary teeth
    • early use of cup
    • bottles in bed
    • use of pacifiers and soft toys as sleep aides
bright futures
Bright Futures
  • AAP/HRSA/MCHB
  • http://www.brightfutures.org
  • “Bright Futures is a practical development approach to providing health supervision for children of all ages from birth through adolescence.”
early childhood caries prevention1
Early Childhood Caries: Prevention
  • Chemotheraputic agents: fluoride varnishes and supplements, chlorhexidene mouthwashes for mothers with high MS counts
  • Community education: training health providers and the public for early detection
lilah clare
Lilah Clare
  • 7 month old
  • Exclusively Breastfed infant
  • No vitamin or mineral supplement
  • Maternal health concern and plan
    • Family history of allergy
    • Exclusive breastfeeding to >1 year
    • Return to work
    • Reports “infant is small”, eats well, no concerns.
    • Questions about fish oil supplement