1 / 28

一、复合场 复合场是指 、 和重力场并存,或其中某两场并存,或分区域存在.

一、复合场 复合场是指 、 和重力场并存,或其中某两场并存,或分区域存在.. 第 4 讲 专题 带电粒子在复合场中的运动. 电场. 磁场. 二、带电粒子在复合场中的运动分类 1 . 静止或匀速直线运动 当带电粒子在复合场 中所受合外力为零时,将处于静止状态或做匀速直 线运动. 2 .匀速圆周运动 当带电粒子所受的重力与 力大小相等,方向相反时,带电粒子在 洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.. 电场. 3 . 较复杂 的曲线运动

aldan
Download Presentation

一、复合场 复合场是指 、 和重力场并存,或其中某两场并存,或分区域存在.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 一、复合场 • 复合场是指、和重力场并存,或其中某两场并存,或分区域存在. 第4讲 专题 带电粒子在复合场中的运动 电场 磁场

  2. 二、带电粒子在复合场中的运动分类 • 1.静止或匀速直线运动 • 当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直 • 线运动. • 2.匀速圆周运动 • 当带电粒子所受的重力与力大小相等,方向相反时,带电粒子在 • 洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动. 电场 • 3.较复杂的曲线运动 • 当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.

  3. 三、带电粒子在复合场中运动的应用实例 • 速度选择器(如图8-4-1所示) • (1)平行板中电场强度E和磁感应强度B互相这种装置能把具有一定速度的 • 粒子选择出来,所以叫做速度选择器. • (2)带电粒子能够沿直线匀速通过速度选择器的条件是:qE=qvB,即v= . 1. 垂直

  4. 1.在两平行金属板间,有如图8-4-2所示的互相正交的匀强电场和匀强磁场.α粒子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有1.在两平行金属板间,有如图8-4-2所示的互相正交的匀强电场和匀强磁场.α粒子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有 • A.不偏转 B.向上偏转 • C.向下偏转 D.向纸内或纸外偏转

  5. (1)若质子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,质子将________.(1)若质子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,质子将________. • (2)若电子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,电子将________. • (3)若质子以大于v0的速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,质子将________. • (4)若增大匀强磁场的磁感应强度,其他条件不变,电子以速度v0沿垂直于电场和磁场的方向,从两极正中央射入,电子将________.

  6. 解析:不难看出本题的四个小题都是根据发散思维方法设计的.为解本题,必须从分析带电粒子在互相正交的匀强电场和匀强磁场中的受力情况入手.解析:不难看出本题的四个小题都是根据发散思维方法设计的.为解本题,必须从分析带电粒子在互相正交的匀强电场和匀强磁场中的受力情况入手. • 设带电粒子的质量为m,带电荷量为q,匀强电场强度为E、匀强磁场的磁感应强度为B.带电粒子以速度v垂直射入互相垂直的匀强电场和匀强磁场中时,若粒子带正电,则所受电场力方向向下,大小为qE;所受磁场力方向向上,大小为Bqv.

  7. 沿直线匀速通过时,显然有Bqv=qE,v= ,即匀速直线通过时,带电粒子的速度与其质量、电荷量无关.如果粒子带负电,电场方向向上,磁场力方向向下,上述结论仍然成立.所以,(1)(2)两小题应选择A. • 若质子以大于v0的速度射入两板之间,由于磁场力f=Bqv,磁场力将大于电场力,质子带正电,将向上偏转,第(3)小题应选择B. • 磁场的磁感应强度B增大时,电子射入的其他条件不变,所受磁场力F=Bqv0也增大,电子带负电,所受磁场力方向向下,将向下偏转,所以第(4)题应选择C. 答案:(1)A(2)A(3)B(4)C

  8. 2.磁流体发电机 • (1)主要构造如图8-4-3所示. • (2)原理:等离子体(即高温下电离的气体,含有大量带正电和带负电的粒子,而从整体来说呈电中性)喷入磁场,正、负粒子在洛伦兹力的作用下发生上下偏转而聚集到A、B板上,产生电势差,设A、B平行金属板的面积为S,相距为L, • 等离子体的电阻率为ρ,喷入气体速度为v,板间磁场的磁感强度为B,板外电阻为R,当等离子体匀速通过A、B板间时,A、B板上聚集的电荷最多,板间电势差最大,相当于电源电动势E,此时离子受力平衡:E场q=qvB,E场=vB,电动势E=E场L=BLv,电源内电阻r=,所以R中电流

  9. 3.电磁流量计 • (1)如图8-4-4所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体流过导管. • (2)原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a、b间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.

  10. 四、“磁偏转”和“电偏转”的差别

  11. 【例1】(2010·山东淄博调研)在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与y轴负方向成45°角.在x<0且OM的左侧空间存在着沿x轴负方向的匀强电场E,场强大小为0.32 N/C,在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场B,磁感应强度大小为0.10 T,如图8-4-5所示,不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2.0×103 m/s的初速度进入磁场,已知微粒的带电荷量为q=5.0×10-18 C,质量为m=1.0×10-24kg,求:

  12. (1)带电微粒第一次经过磁场边界点的位置坐标;(1)带电微粒第一次经过磁场边界点的位置坐标; • (2)带电微粒在磁场区域运动的总时间; • (3)带电微粒最终离开电、磁场区域点的位置坐标.(保留两位有效数字)

  13. 解析:(1)带电微粒从O点射入磁场,运动轨迹如图.第一次经过磁场边界上的A点.由qv0B=,得r= =4×10-3 m,A点位置坐标 • (-4×10-3,-4×10-3). • (2)带电微粒在磁场中运动轨迹如图,设带电微粒在磁场中做圆周运动的周期为T, • 则 代入数据解得:T= 3×10-5 s, • 所以 t = 3×10-5 s. • (3)微粒从C点沿y轴正方向进入电场,速度方向与电场力方向垂直,微粒做类平抛运动.

  14. 代入数据解得:Δy=0.2 m,y=Δy-2r=0.2 m-2×4×10-3 m=0.19 m. • 离开电、磁场时的位置坐标为(0,0.19). • 答案:(1)(-4×10-3,-4×10-3)(2)1.3×10-5 s(3)(0,0.19)

  15. 解决带电粒子在分离复合场运动问题的思路方法解决带电粒子在分离复合场运动问题的思路方法

  16. 1-1 如图8-4-6所示,一带电粒子以某一速度v0在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的圆形匀强磁场区域Ⅰ(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场区域Ⅱ,已知电场强度大小为E,方向竖直向上,当粒子穿出电场时速度大小变为原来的倍,粒子穿出电场后进入宽度为d的匀强磁场区域Ⅲ,磁场方向向外,大小为B,已知带电粒子的质量为m,电量为q,重力不计.粒子进入磁场时的速度如图所示与水平方向成60°角,求:

  17. (1)粒子电性?带电粒子在磁场区域Ⅰ中运动的速度v0多大?(1)粒子电性?带电粒子在磁场区域Ⅰ中运动的速度v0多大? • (2)圆形磁场区域的最小面积S多大? • (3)若使粒子能返回电场,磁场区域Ⅲ的宽度d至少多大?

  18. 解析:(1)根据左手定则可知,粒子带负电 • 当粒子刚出电场时,速度分解如图所示 • vy= • v0= • vy=v0③ • 由①②③得v0= • (2)粒子在磁场中的轨迹如图所示,以AC为直径的磁场区域最小,轨道半径

  19. (3)粒子在磁场Ⅱ中的运动轨迹如图所示 • 在磁场Ⅱ中运动的半径为

  20. 【例2】 如图8-4-7所示,空间内存在水平向右的匀强电场,在虚线MN的右侧有垂直纸面向里、磁感应强度为B的匀强磁场,一质量为m、带电荷量为+q的小颗粒自A点由静止开始运动,刚好沿直线运动至光滑绝缘的水平面C点,与水平面碰撞的瞬间小颗粒的竖直分速度立即减为零,而水平分速度不变,小颗粒运动至D处刚好离开水平面,然后沿图示曲线DP轨迹运动,AC与水平面夹角α=30°,重力加速度为g,求:

  21. (1)匀强电场的场强E; • (2)AD之间的水平距离d; • (3)已知小颗粒在轨迹DP上某处的最大速度为vm,该处轨迹的曲率半径是距水平 • 面高度的k倍,则该处的高度为多大?

  22. 解析:(1)小颗粒受力如图所示, • qE=mgcot α,E • (2)设小颗粒在D点速度为vD, • 在水平方向由牛顿第二定律得:qE=max,2axd= • 小颗粒在D点离开水平面的条件是: • qvDB=mg,解得 • (3)当速度方向与电场力和重力合力方向重直时,速度最大,则

  23. 带电粒子(体)在复合场中的运动问题求解要点 • (1)受力分析是基础.在受力分析时是否考虑重力必须注意题目条件. • (2)运动过程分析是关键.在运动过程分析中应注意物体做直线运动,曲线运动 • 及圆周运动、类平抛运动的条件. • (3)根据不同的运动过程及物理模型选择合适的物理规律列方程求解. • (4)常用的物理规律:共点力平衡条件、运动定律、运动学公式、动能定理、能 • 量守恒定律、功能关系、动量定理、动量守恒定律、圆周运动向心力公式等. • (5)思维方法:常用到力的合成与分解、运动的合成及分解、等效法、假设法、 • 类比法等.

  24. 2-1如图8-4-8所示,质量为2 g的小球,带有1×10-3 C负电荷,静置于水平绝缘桌面MN上的P点,P距桌面右端点N的距离为0.5 m,小球与水平桌面之间的动摩擦因数为0.1,桌面MN距水平面OO′的高度为1.2 m.过N点的竖直虚线右侧存在互相正交的匀强电场和匀强磁场,电场方向竖直向下,场强E=20 N/C,磁场方向水平向里,磁感应强度B=2.5 T.现突然在桌面正上方加一场强也为E,方向水平向左的匀强电场,使小球沿MN运动,最终落到水平面OO′上.g取10 m/s2,求:

  25. (1)小球从P点到刚落到水平面OO′所需的时间; • (2)小球从P点到刚落到水平面OO′的运动过程中,机械能和电势能的改变量各 • 是多少?

  26. 解析:(1)根据题意小球从P到N做匀加速直线运动,进入复合场后,因mg=2×10-2 N,qE=2×10-2 N,所以小球在洛伦兹力的作用下做匀速圆周运动. • 从P到N的过程有:Eq-μmg=ma,解得:a=9 m/s2 • 则小球到N点的速度为vN= =3 m/s,t1=vN/a=1/3 s • 进入复合场后,由qvNB=mv/R知:轨道半径R=mvN/qB=2.4 m • 又因h=1.2 m,则由几何知识可知小球在复合场中运动轨迹对应的圆心角为60°.

  27. 所以:t2=T/6=πm/3qB=0.8π/3 s • 所以:t=t1+t2=(1+0.8π)/3 s=1.2 s. • (2)小球机械能的改变量: • 小球电势能的改变量:ΔEp=-EqsPN+Eqh=1.4×10-2 J. • 答案:(1)1.2 s(2)1.4×10-2 J 点击此处进入 作业手册

More Related