# Introduction to Computer Vision - PowerPoint PPT Presentation

Introduction to Computer Vision

1 / 74
Introduction to Computer Vision

## Introduction to Computer Vision

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. Lecture 4 Dr. Roger S. Gaborski Introduction to Computer Vision Roger S. Gaborski

2. HW#2 Due 02/13 Roger S. Gaborski

3. In Class Exercise Review 1. Given the following MATLAB code: >> image1 = rand([3]) image1 = 0.9500 0.6555 0.0318 0.7431 0.1712 0.2769 0.3922 0.7060 0.0462 >> image2 = imadjust(image1, [ .1,.75],[.2, .6]) Carefully draw the transformation map specified by the imadjust statement. Label the x and y axis. Roger S. Gaborski

4. Characteristics: • gamma >1: all pixels become darker • gamma <1: all pixels become brighter • gamma =1: linear transform Gamma specifies the shape of the curve Brighter Output (gamma<1) Darker Output (gamma>1) Chapter 3 www.prenhall.com/gonzalezwoodseddins Roger S. Gaborski

5. image1 = 0.9500 0.6555 0.0318 0.7431 0.1712 0.2769 0.3922 0.7060 0.0462 >> image2 = imadjust(image1, [ .1,.75],[.2, .6]) image2 = 0.6000 0.5418 0.2000 0.5958 0.2438 0.3089 0.3798 0.5729 0.2000 Roger S. Gaborski

6. Example 0 .1 2 .3 .4 .5 .6 .7 .8 .9 1.0 OUTPUT 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 Roger S. Gaborski INPUT

7. image2 = imadjust(image1, [ .1,.75],[.2, .6],1) 0 .1 2 .3 .4 .5 .6 .7 .8 .9 1.0 OUTPUT 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 Roger S. Gaborski INPUT

8. image2 = imadjust(image1, [ .1,.75],[.2, .6],1) 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 OUTPUT 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 Roger S. Gaborski INPUT

9. Gray Scale Ramp Image Minimum gray value = .01 Maximum gray value = 1.0 Roger S. Gaborski

10. Roger S. Gaborski

11. Ramp Image image_ramp = zeros(100); for i = 1:100 image_ramp(:,i) = i*.01; end fprintf('minimum gray value = %d, \n', min(image_ramp(:))); fprintf('maximun gray value = %d, \n', max(image_ramp(:))); figure, plot(image_ramp(50,:)), xlabel('pixel position'), ylabel('pixel value') title('values') pause figure, imshow(image_ramp),title('ramp intensity image') pause Roger S. Gaborski

12. Map .01 to .5 and 1.0 to .75 Roger S. Gaborski

13. disp('Use imadjust to map to .50 to .75'); image1 = imadjust(image_ramp,[.01, 1.0],[.5, 0.75]); %map to .5 to .75 fprintf('minimum gray value = %d, \n', min(image1(:))); fprintf('maximun gray value = %d, \n', max(image1(:))); figure, plot(image1(50,:)), xlabel('pixel position'), ylabel('pixel value') title('values') axis([0,100,0,1]) Grid pause figure, imshow(image1, [0,1]); pause Roger S. Gaborski

14. Map .01 to .5 and 1.0 to .75 Roger S. Gaborski

15. Map values in range <=.25 to .35 and >=.50 to .65'); Roger S. Gaborski

16. Map values in range <=.25 to .35 and >=.50 to .65'); disp('Use imadjust to map values in range <=.25 to .35 and >=.50 to .65'); image2 = imadjust(image_ramp,[.25, .50],[.35, 0.65]); fprintf('minimum gray value = %d, \n', min(image2(:))); fprintf('maximun gray value = %d, \n', max(image2(:))); figure, plot(image2(50,:)), xlabel('pixel position'), ylabel('pixel value') title('values') axis([0,100,0,1]) grid pause figure, imshow(image2, [0,1]); Roger S. Gaborski

17. Map values in range <=.25 to .35 and >=.50 to .65'); Roger S. Gaborski

18. Contrast Stretching Transformation • Creates an image with higher contrast than the input image: • r: intensities of input; • s: intensities of output; • m: threshold point (see graph) ; • E: controls slope. Roger S. Gaborski

19. Chapter 3 www.prenhall.com/gonzalezwoodseddins E controls the slope of the function Roger S. Gaborski

20. Output(s) Input(r) Roger S. Gaborski

21. Introduction to Computer Vision Lecture 4 Dr. Roger S. Gaborski

22. Intensity image is simply a matrix of numbers We can summary this information by only retaining the distribution if gray level values: PARTIAL IMAGE INFO: 117 83 59 59 68 77 84 94 82 67 62 70 83 86 85 81 71 65 77 89 86 82 76 67 72 90 97 86 66 54 68 104 121 107 85 46 58 89 138 165 137 91 38 80 147 200 211 187 138 40 80 149 197 202 187 146 56 76 114 159 181 160 113 An image shows the spatial distribution of gray level values Roger S. Gaborski

23. Image Histogram Plot of Pixel Count as a Function of Gray Level Value Pixel Count Gray Level Value Roger S. Gaborski

24. Histogram • Histogram consists of • Peaks: high concentration of gray level values • Valleys: low concentration • Flat regions Roger S. Gaborski

25. Formally, Image Histograms Histogram: • Digital image • L possible intensity levels in range [0,G] • Defined: h(rk) = nk • Where rk is the kth intensity level in the interval [0,G] and nk is the number of pixels in the image whose level is rk . • G: uint8 255 uint16 65535 double 1.0 Roger S. Gaborski

26. Notation • L levels in range [0, G] • For example: • 0, 1, 2, 3, 4, in this case G = 4, L = 5 • Since we cannot have an index of zero, • In this example, index of: Index 1 maps to gray level 0 2 maps to 1 3 maps to 2 4 maps to 3 5 maps to 4 Roger S. Gaborski

27. Normalized Histogram • Normalized histogram is obtained by dividing elements of h(rk) by the total number of pixels in the image (n): fork = 1, 2,…, L p(rk) is an estimate of the probability of occurrence of intensity level rk Roger S. Gaborski

28. MATLAB Histogram • h = imhist( f, b ) • h is the histogram, h(rk) • f is the input image • b is the number of bins (default is 256) • Normalized histogram Roger S. Gaborski

29. Color and Gray Scale Images Roger S. Gaborski

30. Background: Gray Image >> I = imread('Flags.jpg'); >> figure, imshow(I) % uint8 >> Im= im2double(I); % convert to double >> Igray = (Im(:,:,1)+Im(:,:,2)+Im(:,:,3))/3; >> figure, imshow(Igray) There is also the rgb2gray function that results in a slightly different image Roger S. Gaborski

31. Gray Scale Histogram Roger S. Gaborski

32. Plots • bar(horz, v, width) • v is row vector • points to be plotted • horz is a vector same dimension as v • increments of horizontal scale • omitted  axis divided in units 0 to length(v) • width number in [0 1] • 1 bars touch • 0 vertical lines • 0.8 default Roger S. Gaborski

33. p= imhist(Igray)/numel(Igray); >> h1 = p(1:10:256); >> horz = (1:10:256); >> figure, bar(horz,h1) Review other examples in text and in MATLAB documentation Roger S. Gaborski

34. Chapter 3 www.prenhall.com/gonzalezwoodseddins Roger S. Gaborski

35. Color and Gray Scale ImagesRecall from Previous Slide Roger S. Gaborski

36. Gray Scale Histogram Roger S. Gaborski

37. Normalized Gray Scale Histogram >> p= imhist(Igray)/numel(Igray); >> figure, plot(p) Roger S. Gaborski

38. Normalized Gray Scale Histogram 256 bins 32 bins imhist(Igray)/numel(Igray); imhist(Igray,32)/numel(Igray) Roger S. Gaborski

39. Normalized Gray Scale Histogram >> p= imhist(Igray)/numel(Igray); >> figure, plot(p) probability Gray level values Roger S. Gaborski

40. Original Dark Light Roger S. Gaborski

41. Contract enhancement • How could we transform the pixel values of an image so that they occupy the whole range of values between 0 and 255? Roger S. Gaborski

42. Gray Scale Transformation • How could we transform the pixel values of an image so that they occupy the whole range of values between 0 and 255? • If they were uniformly distributed between 0 and x we could multiply all the gray level values by 255/x • BUT – what if they are not uniformly distributed?? Roger S. Gaborski

43. Cumulative Distribution Function Histogram CDF Roger S. Gaborski

44. Histogram Equalization(HE) • HE generates an image with equally likely intensity values • Transformation function: Cumulative Distribution Function (CDF) • The intensity values in the output image cover the full range, [0 1] • The resulting image has higher dynamic range • The values in the normalized histogram are approximately the probability of occurrence of those values Roger S. Gaborski

45. Histogram Equalization • Let pr(rj), j = 1, 2, … , L denote the histogram associated with intensity levels of a given image • Values in normalized histogram are approximately equal to the probability of occurrence of each intensity level in image • Equalization transformation is: k = 1,2,…,L sk is intensity value of output rk is input value Sum of probability up to k value Roger S. Gaborski

46. Histogram Equalization Example • g = histeq(f, nlev) where f is the original image and nlev number of intensity levels in output image Roger S. Gaborski

47. Original Image INPUT Roger S. Gaborski

48. Transformation x255 Output Gray Level Value Input Gray Level Value Roger S. Gaborski

49. Equalization of Original Image OUTPUT Roger S. Gaborski

50. Roger S. Gaborski