magnetoelektronika przyk ady zastosowa n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
MAGNETOELEKTRONIKA przykłady zastosowań PowerPoint Presentation
Download Presentation
MAGNETOELEKTRONIKA przykłady zastosowań

Loading in 2 Seconds...

play fullscreen
1 / 30
affrica

MAGNETOELEKTRONIKA przykłady zastosowań - PowerPoint PPT Presentation

117 Views
Download Presentation
MAGNETOELEKTRONIKA przykłady zastosowań
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. MAGNETOELEKTRONIKAprzykłady zastosowań T. Stobiecki Katedra Elektroniki AGH 1 wykład 11.X.2004

  2. Magnetoelektronika • Bio-sensor (G. Reiss, et al. Univ. of Bielefeld) • Cienka warstwa w bezinwazyjnej chirurgii (K. Ishiyama, et al. Research Institute of Electrical Communication,Tohoku University) • Nowości - magnetic recording • Magnetoresistive logic systems • Nasz udział

  3. R H Vertical magnetic field induces dipol field of bead Detection by GMR / TMR Sensor Signal prop. Number of Beads Increased sensitivity by lock-in technique, uncovered references, layout-Optimization possible: single molecule detection Special applications Special applications : - Bio-Chip

  4. 3) Hybridisation with beads and detection with XMR sensor 1) Immobilisation of target molecules Fixed DNA single strand S magnetic bead, coated with Streptavidin, binds to a selected molecule XMR Sensor Haftschicht XMR sensor detects stray field Si- Substrate 2) Hybridisation of the probe molecules hybridized DNA Biotin N Detection: Magnetoresistive biochip sensor • GMR (Giant MagnetoResistance) • TMR (Tunnel MagnetoResistance) •  detection of single beads / molecules IEEE Trans. Magn., (2002), ICM’03

  5. 22 20 18 16 14 0° 12 Tunnelelement TMR-Amplitude in % Uunten 90° 10 8 6 4 Iunten 2 Ioben 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 0° Feld in Oe 90° Uoben Special applications GMR / TMR - Sensors Design Characteristic GMR TMR

  6. DC-measurements with Bangs 0.8 µm-beads Ref 1 - Sensor 3 Ref 1 - Ref 2 mit beads ohne beads Sensor coverage 1) 5 % 2) 6 % 3) 20 % 4) 23 % 5) 40 % 77 µV 102 µV 267 µV 284 µV 557 µV Signal Special applications

  7. DC-measurements with Bangs 0.8 µm-beads Special applications J. Schotter, P.B. Kamp, A. Becker, A. Pühler, D. Brinkmann, W. Schepper, H. Brückl, G. Reiss: A Biochip based on Magnetoresistive Sensors, IEEE Trans. Magnet., 2002

  8. TMR = Tunneling MagnetoResistance T=10K NiFe sense layer Al2O3 T=300K CoFe MnIr hard magnetic layer TMR Biochip Sensor: 1.6 DC-measurement, Bangs 0.8 µm Beads parallel Bias-Field of -6.4 Oe 1.4 2x2 µm2 elements 1.2 ~5 % coverage 1.0 TMR Amplitude (%) 0.8 50 µm 0.6 0.4 0.2 0.0 -100 -80 -60 -40 -20 0 20 40 60 80 100 perpendicular field (Oe) 5 nm Detection: TMR sensor

  9. Advantages of MAGNETIC micro-machine • Wireless operation • Simple structure • Ways to supply energy • F = M (dH/dx) • T = M H sin q • Magnetostriction • V = df/dt Flying machine K.I.Arai, W.Sugawara, K.Ishiyama, T.Honda, M.Yamaguchi, “Fabrication of Small Flying Machines Using Magnetic Thin Films,” IEEE Trans. Mag., vol.31, No.6, pp.3758-3760 (1995).

  10. 0 Oe 150 Oe 300 Oe Two principles to move Rotation by rotating magnetic field Bending by DC magnetic field

  11. Lower invasive surgery What is the challenge to obtain the medical robots? →Wireless energy supply

  12. Spiral-type Magnetic Micro-Machine Rotational magnetic field Thrust (swimming direction) Magnetization

  13. Field rotation plane GOAL GOAL START START Controlling the swimming direction

  14. 3D coil-system and controller

  15. Very small machine: 0.3mmf

  16. Synchronized swimming of small machine (0.3mmf)

  17. Miniaturization of the machine Tungsten wire : 20mmf Machine diameter : 0.15mm NdFeB : sputtered

  18. Burrowing Machine Driven by Magnetic Torque Machine Rotational Magnetic Field: 150 Oe, 5 Hz The machine can burrow into organismal tissue.

  19. HDD Areal Density Perspective

  20. HDD Areal Density Perspective

  21. Antyferromagnetically coupled AFC media

  22. Heat Assisted Magnetic Recording (HAMR) Co/Pt multilayers by laser heat treatmnet anisotropy enhancement lower coercivity.

  23. Special applications: Magnetoresistive logic „Traditional applications“: Sensors (Car, Automatization) Magnetic Random Access Memory Special : - Magnetoresistive logic: The fundamental logic gate: clock line jx jy word line Vout logic input : magnetic field, logic output : voltage / current Advantage: Field programmable, Logic function can be changed - Reconfigurable computing

  24. Special applications: Magnetoresistive logic Spin logic setup (7 mask e-beam process) 20µm 1mm

  25. Special applications: Magnetoresistive logic Switching by current lines TMR: 20% @ 100mV (1/2 of single ellipse) 2 ellipses, 0.28µm2, serially connected  Hoffset = -60 Oe

  26. Special applications: Magnetoresistive logic Junction TMR Resistance H ± H pin C [Ohm] [Oe] 1 47.1 % 308 46.2 ± 2.3 2 47.1 % 308 46.0 ± 2.3 3 46.9 % 310 46.1 ± 2.5 4 47.0 % 310 46.3 ± 2.5 5 46.8 % 312 46.4 ± 2.5 Steuerleitungen Lese-leitungen j4 j3 j2 j1 Vout Io Io TE4 TE3 TE2 TE1 Masse R. Richter, L. Bär, J. Wecker, G. Reiss: Nonvolatile programmable spin-logic for reconfigurable computing, Appl. Phys. Lett., 80 (2002) 1291

  27. Special applications: Magnetoresistive logic Programmed AND : Clocked operation

  28. Nasz udział http://layer.uci.agh.edu.pl/maglay/podstrony/konfer/