50 likes | 144 Views
This review delves into hybrid lower-limb exoskeletons used in spinal cord injury rehabilitation, exploring technologies, actuation advancements, and functional assessments. The merger of exoskeleton and functional electrical stimulation technologies holds promise in overcoming limitations of individual methods, enhancing joint control and reducing energy needs. The study evaluates 34 articles from various databases and emphasizes the importance of implementating assist-as-needed control and real-world walking challenges in clinical evaluations.
E N D
Review of hybrid exoskeletons to restore gait following spinal cord injury Antonio J. del-Ama, Eng MSc; Aikaterini D. Koutsou, Eng MSc; Juan C. Moreno, Eng PhD; Ana de-los-Reyes, Eng MSc; Ángel Gil-Agudo, MD, PhD; José L. Pons, Prof Eng PhD
Aim • Review hybrid lower-limb exoskeletons, related technologies, advances in actuation and control systems, and functional assessment of individuals with spinal cord injury. • Relevance • Combination of functional electrical stimulation (FES) technology and exoskeletons brings together technologies, methods, and rehabilitation principles that can overcome drawbacks of each individual approach.
Methods • Searched Medline, Science Direct, IEEE Xplore digital library, and Google Scholar databases. • Final database contained 34 articles, which became main information source of this article.
Hybrid Exoskeletons Left: Controlled-brake orthosis (CBO) exoskeleton. Right: CBO under clinical trial. WalkTrainer. Variable hip constraint mechanism exoskeleton.
Conclusions • Hybrid technologies can produce feasible systems in which exoskeleton provides FES with adequate control of joint movement, reducing system’s energy requirements. • Assist-as-needed control strategies must also be implemented. • Systems should challenge users to walk in real environments. • Clinical evaluation must address gait performance, user-perception, and physiological cost through clinically validated functional scales and protocols.