1 / 67

CLOSE ( Characterize and Land on Orpheus with Sample-return to Earth)

jpl team x. psss 2003. close. CLOSE ( Characterize and Land on Orpheus with Sample-return to Earth). PI: Sarah Noble PM: Dominic Papineau. Planetary Science Summer School 2003. August 14 th 2003. JPL Proprietary/Competition Sensitive DO NOT DISTRIBUTE.

aelwen
Download Presentation

CLOSE ( Characterize and Land on Orpheus with Sample-return to Earth)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. jpl team x psss 2003 close CLOSE(Characterize and Land on Orpheus with Sample-return to Earth) PI: Sarah Noble PM: Dominic Papineau Planetary Science Summer School 2003 August 14th 2003 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive JPL Proprietary/Competition Sensitive DO NOT DISTRIBUTE

  2. Participants and Roles • Kathryn Fishbaugh, (Brown Univ.) Science and Instruments • Gerald Patterson, (Brown Univ.) Mission Design • Adam Mantz, (Cornell Univ.) Ground System • Erika Wagner, (M.I.T.) Systems • Alison Cohen, (M.I.T.) Cost estimation • Swati Mohan, (Cornell Univ.) Propulsion • Matt Colgan, (Univ. Colo.) Attitude Control System • Nathaniel Putzig, (Univ. Colo.) Command & Data Systems and Software • Harald Heisenger, (Brown Univ.) Power and Thermal Systems • Douglas Jerolmack, (M.I.T.) Structure, Configuration, and Mechanisms • Erwan Mazarico, (M.I.T.) Telecommunications • Ian Garrick-Bethell, (M.I.T.) Entry, Descent, Landing, and Return Vehicle New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  3. Solar System Exploration Roadmap • Objective 1: Learn how the Sun’s family of planets and minor bodies originated • Objective 2: Determine how the Solar System evolved to its current diverse state (asteroid evolution, planetary impact history) • Objective 3: Determine the characteristics of the Solar System that led to the origin of life (e.g. the first billion years of evolution) • Objective 5: Explore the space environment to discover hazards to Earth (terrestrial mass extinctions, physical and chemical characteristics of asteroids) New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  4. 50nm Science Objectives - The big picture Why an asteroid? Didn’t NEAR already do this? • We can compare Orpheus to Eros and other asteroids that we have studied • We are returning samples Why Orpheus? • Vestoid • Make links to Vesta • Make links to meteorites • Explore a primitive differentiated body - this may be a chip of the earliest volcanically active body in the solar system! Why sample return? • Ground truth (great complement to Dawn) • Space weathering - TEM resolution • Detailed chemistry and dating Asteroid 4 Vesta “Space Weathering” New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  5. Science Objectives - What we expect to find? NEAR at Eros BSE image of Kapoeta (Howardite) New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  6. Science Objectives • Characterize the surface of near-earth asteroid Orpheus • Topography, mineralogy, chemistry, space weathering, surface age, morphology • Characterize the shallow sub-surface of the asteroid • Mineralogy, chemistry, age, space weathering, solar wind, physical properties • Characterize the asteroid interior • Density, mass distribution, porosity • Comparisons • Vesta • Eros and other asteroids • HED meteorites New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  7. Science Objective Surface Measurement Requirement Instrument Type & Performance Data Products Topography Elevation Laser Altimeter V=10cm H=0.5m Global DEM Mineralogy Vis/NIR spectra Multi-spec camera/NIR spec Bands: 8 Vis/200 NIR Res:10cm (1m floor) Multi-spectral images, global spectra Chemistry Sample Return N/A N/A Space Weathering Vis/NIR spectra Sample Return Vis/NIR camera Res: 10cm (1m floor) Multi-spectral images/NIR spectra Surface Age High res images Vis/NIR camera Res: 10cm Global image mosaic Morphology High res images Vis/NIR camera Res: 10cm Global DEM, Global image mosaic Remnant Magnetization Gauss Magnetometer Res: 40µgauss Global magnetic map Science Traceability - Surface New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  8. Science Objective Shallow Sub-Surface Measurement Requirement Instrument Type & Performance Data Products Mineralogy Sample Return N/A N/A Chemistry Sample Return N/A N/A Space Weathering Sample Return N/A N/A Physical Properties High res images, Sample Return Microscope and Pan-Cam Panoramics of landing area and microscope images Age Sample Return N/A N/A Solar Gas Composition/Content Sample Return N/A N/A Science Traceability - Shallow Sub-surface New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  9. Science Objective Interior Measurement Requirement Instrument Type & Performance Data Products Density Mass, Volume Radio Science, Seismometers N/A Porosity Mass, Volume, Composition Radio Science, Sample Return N/A Structure Internal Structure, Depth of regolith, Mass distribution Radio Science, Radar, Seismometers, Altimeter Gravity map Science Traceability - Interior New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  10. Performance Floor • The Performance Floor for this mission: • Global characterization of surface via laser altimeter and multi-spectral imager • Return of >10g asteroid material from Orpheus • Model interior structure via laser altimeter and radio science New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  11. Payload Summary Table New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  12. Performance Floor • De-scopes that take mission from baseline to performance floor (in order): • Radar • Seismometers • Magnetometer • Microscope Camera New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  13. Payload Summary LASER ALTIMETER • Key technical performance characteristics • Mass : 7 kg • Power : 5 W • Total Data Volume: 8.6x1011 bits • Heritage : 100% (MESSENGER) • Technology Readiness Level: 7 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  14. Payload Summary MULTISPECTRAL IMAGER/SPECTROMETER • Key technical performance characteristics • Mass : 16 kg • Power : 10 W • Total Data Volume: 6.2x1010 bits • Special requirements: pointing=0.59°; FOV=0.9° • Heritage : 80% (VIS imager from NEAR; mid-IR modified from MESSENGER) • Technology Readiness Level: 7 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  15. Payload Summary GROUND PENETRATING ORBITAL RADAR • Key technical performance characteristics • Mass : 17 kg • Power : 70 W • Total Data Volume: 4.8x108 bits • Heritage : 100% (Mars Express) • Technology Readiness Level: 7 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  16. Payload Summary RADIO SCIENCE • Key technical performance characteristics • Mass : 30.9 kg • Power : 30W • Data Rates: 3x104 bits downlink; 2x103 uplink • Frequency: 8.42 GHz downlink; 7.1 GHz uplink • Special requirements: radio not used for science while performing attitude control • Heritage : 100% (High gain from Cassini) • Technology Readiness Level: 9 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  17. Payload Summary MAGNETOMETER • Key technical performance characteristics • Mass : 0.1 kg • Power : 1.0 W • Data Rates: 6.9x109 bits/missions; 2.7x108 storage bits • Heritage : commercial • Technology Readiness Level: 9 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  18. Payload Summary PANORAMIC CAMERA/DESCENT IMAGER • Key technical performance characteristics • Mass : 0.27 kg • Power : 2W • Total Data Volume: 4x109 bits; 25 images/panorama, 10 panoramas • Special requirements: FOV=17x17° • Heritage : 100% (MER) • Technology Readiness Level: 7 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  19. Payload Summary 3 SEISMOMETERS • Key technical performance characteristics • Mass : 6 kg • Power : 1.5 W • Total Data Volume: 2.9x107 bits • Special requirements: must be coupled to surface; require explosive charges as seismic sources; require drop-off before landing • Heritage : 60% (sensors created and tested at JPL) • Technology Readiness Level: 5 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  20. Payload Summary MICROSCOPE • Key technical performance characteristics • Mass : 0.5 kg • Power : 2 W • Total Data Volume: 4.5x107 bits • Special requirements: mounted on scoop arm • Heritage : 100% (Mars ‘01 Lander) • Technology Readiness Level: 7 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  21. Sample Acquisition STICKY PAD Key technical performance characteristics • Mass : 4 kg • Power : <3 W • Heritage : concept originally developed for HERA asteroid sample return • Technology Readiness Level: 3-4 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  22. Sample Acquisition MOMENTUM-COMPENSATED SAMPLING SPIKE Key technical performance characteristics • Mass : 10 kg • Power : negligible • Heritage : Concept originally developed for the Champollion (ST-4) comet mission • Technology Readiness Level: 2-3 • 3cm diameter / 0.5m length New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  23. Mission Summary • Launch Vehicle: Atlas V (531) • Launch Date: Dec. 2013 (Mar. 8 2006) • Arrival Date: April 2016 (July 3 2008) • Number of days in Launch Period: 21 days (C3 = 18.0) • Trajectory Type: Direct transfer Trajectory • Mission Duration: 3.7 years New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  24. Launch Vehicle • Atlas V (531) • 1st Stage: Common Core Booster RD-180 lO2/kerosene engine • 2nd Stage: Single Centaur lO2/lH2 engine • 3 SRBs • 5 m fairing • 3744.8 kg capacity • No flight heritage in 2003 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  25. Launch Vehicle Comparison *C3 for 21 day launch window is 18.0 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  26. Flight Trajectory New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  27. Spacecraft range Ranges (AU) Time at Orpheus New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  28. Ecliptic View at Orpheus Arrival (2008/7/3) New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  29. Mission Plan • Phase 1: Launch and Cruise Day 0 • TCM at apoapse • Phase 2: Orpheus Rendezvous Day 850 • Phase 3: Orbital mapping • Phase 4: Deploy seismometers / charges Day 950 • Locate charges / seismometers • Activate charges • Collect data from seismometers • Phase 5: Descent and Landing Day 952 • Selection of landing site (1km) • Landing / sampling / imaging • Minimum sampling case (2h) • Phase 6: Ascent Day 959 • Collect data from seismometers • Phase 7: Departure and Earth Flyby Day 1140 • Phase 8: EEV deployment Day 1351 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  30. Descent and Landing • The landing location is chosen. • A straight line trajectory is chosen to the landing site. • Gravity effects are largely negligible. • At 1000m, a burn is made to correct velocity to 1.0m/s. • At 100m, a final burn is made to reduce closure velocity to 10cm/s. • At 100m contamination of the site with exhaust is negligible. • The S/C sets down at 10cm/s. • No hazard avoidance. • No human in loop. • Software must maintain acceptable attitude and descent velocity. New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  31. Trajectory New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  32. Maneuver V (m/s) TCM-1 30.0 Apoapse 1294.0 Apoapse Cleanup 50.0 Orbit Insertion 291.0 Orbit Insertion Cleanup 20.0 Landing Operations 25.0 Departure 823.0 Departure Cleanup 30.0 Earth Arrival 0.0 Earth Deflection 15.0 Total: 2578.0 V Description New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  33. Mission Phase Wet Mass (with margins) Atlas V (531) launch 3425.1 kg Orpheus landing ~1200 kg Earth entry 65 kg Flight System Overview • Architecture: 3-axis stabilized satellite with staged Earth Entry Vehicle (EEV) • Payload: 5 instruments with 500 kbps peak output, 3 sample acquisition tools • Power: GaAs solar panels with secondary Li-Ion battery • Propulsion: Hydrazine monoprop for DV = 2.6 km/s • ACS: Star tracker, reaction control wheels & IMU for 1 arcsec pointing control • Telecom: X band to DSN (30 kbps downlink, 2 kbps uplink), S band to seismometers (2 kbps) • C&DH: Power PC 750 w/80GB solid state storage New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  34. Mass Budget Distribution New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  35. ACS Propulsion Mission Design Structures Power Science Instruments CDS Thermal Telecom Ground Systems System Level Block Diagram New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  36. Structure Summary Main thruster High gain antenna Momentum wheels Earth entry vehicle /sticky pad arm Pan/descent camera Instrument face (next slide) Microscope/scoop 1.5 m New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  37. Structure Summary (cont.) • Solar arrays sweep • back at landing • Lands instrument • side down • Legs developed • w/ separately fun- • ded tech. program • Mass = 287 kg EEV Seismic stations (3) Monoprop. Tanks (3) Data storage/handling Pressurant tank Multispectral imager Ground penetrating radar Laser altimeter 1.5 m New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  38. ACS Requirements • Pointing Control: 1800 arcsec • 2124 arcsec for imager • 1800 arcsec for HGA • Pointing Knowledge: 900 arcsec • Pointing Stability: 20 arcsec/s • 20 arcsec/pixel • 100 ms exposure time • 1/10 pixel (rule of thumb for acceptable smear) New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  39. ACS Design Summary • 3 axis stabilized • Attitude Determination • Star Tracker: primary inertial reference • Coarse Sun Sensor: safe mode & initial deployment • Gyros: backup altitude and horizontal velocity • Attitude Control • Thrusters: reaction wheel de-saturation • Reaction Wheels: fine pointing for radio science • 33 kg, 69 W avg, 99W peak New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  40. Propulsion • Driving Requirements: • ∆V budget • Type of Launch Vehicle • Cost • Hydrazine Mono-propellant System • One 445N main engine • Four 22N thrusters • Twelve 0.7N thrusters • 1 Composite Pressurant Tank and 3 Fuel Tanks • Dry mass: 150 kg • Propellant mass: 2382 kg • Total average power usage: 123 W • Tank Dimensions: Radius=0.5m, Length=1.4m New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  41. Power • Solar arrays are sized to surface operations • Mass: 10.22 kg • Area: 3.16 m2 • Diameter: 1.42 m • 2 GaAs Triple-Junction Rigid Panels • Li-ion technology life issues will be improved by 2010 tech cut-off New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  42. Telecom • HGA • X-band: u/l @8.42Ghz, d/l @7.1GHz • Redundancy: full for components , only 1 antenna • Data rates: u/l @30kb/s, d/l @2kb/s • Power: 30W • LGA • X-band • Redundancy: 2 antennae • Data rates: u/l @40b/s, d/l @15b/s • Power: 30W • Transceivers (orbiter  seismometers) • S-band: 2.25Ghz • Redundancy • Orbiter: 2 transceivers and 1 antenna • Seismometer: 1 transceiver and 2 antennae • Data rates: u/l @3.7kb/s • Power: 50mW New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  43. Ground Systems DSN 34m Beam Wave Guide Subnet used for all operations (70m available for emergencies) • Launch & early ops: 2 weeks, continuous coverage • Cruise: 26.5 months, beacon mode (2 passes/week, health check every 2 weeks) • Orbit, landing and surface ops: 3.5 months, continuous coverage • Data rate of 30 kbps during this phase allows data to be returned in near real-time. • Complex, ground directed navigation during low orbits, probe deployment and landing: work on 3 sequences at once (development, testing and operation) • Earth return: 9.5 months, similar to cruise. • Earth encounter: increased coverage starting 2 months prior to encounter. New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  44. Command & Data Handling Subsystem • Based on the Mars ‘05 CDH subsystem, 20% contingency • 30.5kg Total C&DH system mass 30.5 kg • 36.4W peak power consumption • Redundant processing system, non-volatile memory, and controllers • Single 80GB internally redundant solid state recorder Flight Software Subsystem • 25% inheritance from NEAR and Stardust missions • Estimates employ COCOMO II modeling tool (calibrated to previous JPL missions) • Estimated 241,000 logical lines of code • Estimated 1043 work-months New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  45. Earth Entry Vehicle (EEV) • Stardust model, built by Lockheed Martin. • Contains sticky pad sampling arm, core sample, and scoop sample. • Passively stabilized. • Spin-up required. • Parachute landing in the Utah Test and Training range. • Landing footprint: 30 x 84km. • Ground recovery based on radar tracks and beacon. • Mass: 50kg (including sticky pad sample collection arm). • Dimensions: approx 1.0m diameter. • Technology readiness level: 6 New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  46. Earth Reentry Sequence Images taken from Stardust mission (also HERA reentry study). UTAH Test and Training Range. New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  47. Major System Trades • Mono-propellant vs bi-propellant • Launch vehicle cost vs capability • Solar panel technology & mass vs cost • Science instruments vs mass, power & cost • Mission length vs power and telecom requirements New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  48. Ranges at Orpheus Arrival (2008/7/3) Ranges (AU) New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  49. Systems Risk Management • Significant internal redundancy in ACS and CDS • Functional redundancy in propulsion and telecom • Science redundancy provided by 3 sample collection tools, multiple instruments for internal structural characterization • Heritage elements across all systems • Operations scaled to meet science floor even with single-string failures in surface sample collection New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

  50. Critical events Mission Critical Events Key Elements Launch Launch vehicle capability Orbit insertion and maneuvers Navigation accuracy Attitude control accuracy Descent and landing on asteroid Spike design / unknown surface Anchoring onto asteroid surface Thermal shield, parachute Sample entry into Earth’s atmosphere New Frontiers PAR - <CLOSE> JPL Proprietary/Competition Sensitive

More Related