1 / 45

Metallicity: A Smoking Gun for Gas Flows in Mergers

Metallicity: A Smoking Gun for Gas Flows in Mergers. Lisa Kewley U. Hawaii. Margaret Geller (SAO), Betsy Barton (UC Irvine). Summary. Motivation Metallicity diagnostics Luminosity-Metallicity Relation Central Star Formation Blue Bulges Merger Models

adsila
Download Presentation

Metallicity: A Smoking Gun for Gas Flows in Mergers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metallicity: A Smoking Gun for Gas Flows in Mergers Lisa Kewley U. Hawaii Margaret Geller (SAO), Betsy Barton (UC Irvine)

  2. Summary • Motivation • Metallicity diagnostics • Luminosity-Metallicity Relation • Central Star Formation • Blue Bulges • Merger Models • Conclusions & Future Work

  3. Motivation Effect of mergers on metallicity? unknown Predicted gas flows? elusive Fe Si Mg Fabbiano et al. (2004)

  4. Galaxy Pairs • 502 galaxies from the CfA redshift catalog • (v > 2300 km/s, Dv < 1035 km/s, DD < 77 h-1 Mpc) • Nuclear spectra for ~200 galaxies in pairs • (Barton et al. 2000) Field Galaxies • 198 galaxies from the CfA redshift catalog • full range in Hubble type & Magnitudes in CfA survey • (Jansen et al. 2000) • http://cfa-www.harvard.edu/~jansen/nfgs/nfgssample.html

  5. Metallicity Diagnostics “R23” Kewley & Dopita (2002, ApJS, 142, 35) Also: Pagel (1979), McCall et al. (1985), ..., Skillman et al. (1989), McGaugh (1991),..., Zaritsky et al. (1994), Charlot (2001), ...

  6. Galaxy Pairs Luminosity-metallicity Relation 1. shifts for close pairs Kewley, Geller, & Barton (2005, AJ, 131, 2004)

  7. Luminosity Effect? wwide pairs close pairs Need 1-2 Mag rise NFGS cz < 2300 km/s Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  8. Luminosity Effect? wwide pairs No shift in upper bound : MB Negative shift in right bound: metallicity close pairs NFGS cz < 2300 km/s Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  9. Luminosity Effect? R-Band Luminosity-metallicity Relation 1. still shifts for close pairs Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  10. Galaxy Pairs Luminosity-metallicity Relation 1. shifts for close pairs metallicity effect? gas infall? Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  11. Central Burst Strength, SR(t) Barton, Geller & Kenyon (2003): Stellar population synthesis models + colors + EWs assuming 2 populations (old & young) SR(t) = current fraction of R-band light from young burst

  12. Central Burst Strength Barton, Geller & Kenyon (2003)

  13. Galaxy Pairs Luminosity-metallicity Relation 1. shifts for close pairs 2. correlated with central burst strength Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  14. Galaxy Pairs Luminosity-metallicity Relation 1. shifts for close pairs 2. correlated with central burst strength Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  15. Blue Bulges Kannappan et al. (2003): “blue bulge parameter” • (B-R) = (B-R)outer - (B-R)inner where (B-R)outer = (B-R) at 75% light radius (B-R)inner = (B-R) at 1/2 light radius

  16. Galaxy Pairs Blue Bulges Luminosity-metallicity Relation 1. shifts for close pairs 2. correlated with central burst strength 3. correlated with blue bulges Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  17. Metallicity Gradient Keck LRIS Spectroscopy Kewley, Geller, & Barton (2005, AJ, submitted)

  18. Metallicity Gradient Keck LRIS Spectroscopy See also: Li Hsin Chien’s Poster Kewley, Geller, & Barton (2005, AJ, submitted)

  19. Merger Scenario Images Courtesy Chris Mihos

  20. Galaxy Pairs Luminosity-metallicity Relation 1. shifts for close pairs 2. correlated with central burst strength 3. correlated with blue bulges Evidence for Gas Infall Kewley, Geller, & Barton (2006, AJ, 131, 2004)

  21. Metallicity Gradients

  22. Metallicity Gradients M101 Kennicutt, Bresolin & Garnett (2003)

  23. Iono et al. (2004): Simulations predict: 1. Gas inflow rate ~ 7 Mo/yr 2. Gas flows within 1st 100 Myr but before disk merger . Merger Scenario

  24. Iono et al. (2004): Simulations predict: 1. Gas inflow rate ~ 7 Mo/yr 2. Gas flow within 100 Myr but before disk merger . Merger Scenario

  25. Assuming: 1. Gas inflow rate ~ 7 Mo/yr 2. Normal Spiral Metallicity gradient . Merger Scenario How much infalling gas is required?

  26. Assuming: 1. Gas inflow rate ~ 7 Mo/yr 2. Normal Spiral Metallicity gradient . Merger Scenario How much central dilution is required? 50-60% Merger models predict: 60% infall

  27. Assuming: 1. Gas inflow rate ~ 7 Mo/yr 2. Normal Spiral Metallicity gradient 3. Central Gas Mass 108 - 109 Mo ave v. high . Merger Scenario . How long will it take to infall?

  28. Assuming: 1. Gas inflow rate ~ 7 Mo/yr 2. Normal Spiral Metallicity gradient 3. Central Gas Mass 108 - 109 Mo . Merger Scenario . How long will it take to infall? 9x106 - 9x107 years Merger models predict: within 1x108 years

  29. Josefa Perez et al. (2006, astro-ph/0605131) • Chemical evolution model (Scannappieco et al. 2005) • L-CDM model (GADGET-2; Springel & Hernquist 2003) • Lower mean central (O/H) in pairs from inflows New Theoretical Models +

  30. Conclusions • Close galaxy pairs have lower than field • central metallicities • “Smoking gun” for gas infall during merger? • Central metallicity correlates with: • central burst strength • blue bulges • Timescale consistent with current • merger simulations

  31. Future Directions • Keck LRIS spectra of matched pair members • Merger simulations of metallicity gradients

  32. Available Now! Starburst99-Mappings On-LineL. Kewley & C. Leitherer • Starburst99-Mappings Interface: • http://www.stsci.edu/science/starburst99/ • Mappings Interface: • http://www.ifa.hawaii.edu/~kewley/Mappings Pre-run model grids Interactive web form to run models

  33. Motivation Effect of mergers on metallicity is unknown Fe Si Mg Fabbiano et al. (2004)

  34. Metallicity Diagnostic Comparisons Kewley & Ellison (2005)

  35. Metallicity: Strong lines vs Auroral Lines Garnett, Kennicutt, Bresolin

  36. Classification Scheme

  37. 1’ Galaxy Pairs Luminosity-metallicity Relation 1. shifts for close pairs 2. correlated with central burst strength 3. correlated with blue bulges Evidence for Gas Infall Kewley, Geller, & Barton (2005, AJ, submitted)

  38. GOODS Survey: 0.3 < z< 1 Kobulnicky & Kewley (2004, ApJ, 617,240)

  39. Metallicity - [NII]/Ha Pettini & Pagel (2004)

  40. Metallicity Diagnostics 1.Theoretical - photoionization models e.g., McGaugh (1991), Kewley & Dopita (2002), Tremonti et al. (2004) 2.Empirical - fit to Te metallicities e.g., Pilyugin (2000), Pettini & Pagel (2004) Combination - fit to Temethod + theoretical metallicities e.g., Denicolo, Terlevich & Terlevich (2002)

  41. Metallicity - [OIII]/Hb,[NII]/Ha Pettini & Pagel (2004)

  42. Metallicity Diagnostic Comparisons Kewley & Ellison (2005, in prep)

  43. Metallicity: Strong lines vs Auroral Lines Garnett, Kennicutt, Bresolin

  44. GOODS Survey: 0.3 < z< 1 Kobulnicky & Kewley (2004, ApJ, 617, 240)

  45. Auroral Line Saturation Stasinska (2002,2005)

More Related