310 likes | 594 Views
第七章 气体与蒸汽的流动. 主要研究内容: 气体和蒸汽在流动过程中的能量传递与转换规律。 工程应用举例: 1 、喷管 (重点) 涡轮机械:高温高压气体流经喷管后流速升高,然后进入涡轮机冲击叶轮旋转,输出机械功; 喷气式飞行器:利用尾部喷管高速气流的反作用力推进飞行器; 射流设备:消防设备、射流风机等。. 2 、扩压管 叶轮式压气机:涡轮机流出的高速气流经扩压管将动能转换为压能。. 冲压式喷气推进机:前方扩压管、尾部喷管(气流经扩压管进入燃烧室,燃气进入尾部喷管)速度足够高时不需燃料,但不能自行起飞。 3 、绝热节流 制冷装置:节流阀
E N D
主要研究内容:气体和蒸汽在流动过程中的能量传递与转换规律。主要研究内容:气体和蒸汽在流动过程中的能量传递与转换规律。 • 工程应用举例: • 1、喷管(重点) • 涡轮机械:高温高压气体流经喷管后流速升高,然后进入涡轮机冲击叶轮旋转,输出机械功; • 喷气式飞行器:利用尾部喷管高速气流的反作用力推进飞行器; • 射流设备:消防设备、射流风机等。
2、扩压管 • 叶轮式压气机:涡轮机流出的高速气流经扩压管将动能转换为压能。 • 冲压式喷气推进机:前方扩压管、尾部喷管(气流经扩压管进入燃烧室,燃气进入尾部喷管)速度足够高时不需燃料,但不能自行起飞。 • 3、绝热节流 • 制冷装置:节流阀 • 管路中的减压阀、调节阀或流道截面突然变化等情况。
7―1 一维稳定流动基本方程 两种常用喷管的形状: 简化模型: 一维、定熵(可逆、绝热)、稳定流动 一、 连续性方程(对流道中任意截面) (1)
微分整理, 得: 对液体:dv = 0,其喷管只能是渐缩喷管,c2≤当地音速. 二、(定熵)过程方程 pvκ=const (2) 微分得: 注:理想气体κ为绝热指数(cp/cV), 蒸气κ为经验值
g△z = 0; ws=0;(wt= -Δh≠0) 三、稳流能量方程 (普遍适用)(3) (可逆) (4) 简化条件: q = 0 将简化条件代入式(3)得: (5) (任意工质和过程)
∴ 动能的增量 = 焓降=技术功 由(5)式还可推得在喷管任意截面处,有: h0为气体绝热滞止时的焓,滞止时的温度和压力用 T0和 p0表示。 T0和 p0 的计算式见 P.115 式(7.26)和(7.27) 滞止过程(c→0、T↑、p↑):c↑→△T↑,△p↑ 理想气体实际滞止与定熵滞止温度相同(焓相同),但压力小于定熵滞止压力(有熵产)。
s 过程为 因 ,式(5)的微分表达式为: (思考:式(6)的使用条件) (能量转换关系) 由(6)得: p↓→ c↑(喷管),反之 p↑→ c↓(扩压管)
四、音速方程 气体音速 ca(a): 理想气体的音速: 1. 当地音速: 流体处于某一状态下的音速。 不同截面(状态)ca不同. • 马赫数 Ma=c/ca Ma >1:超音速;Ma=1:音速;Ma <1:亚音速。
7-2 气体流速与管道截面积的关系 一、气体流速与管道截面积的关系——截面方程 由 ——截面方程 P.112(7.18)
分析: 喷管沿程 dc > 0,根据截面方程 在Ma < 1 区间(亚音速),dA < 0; 在Ma > 1 区间(超音速), dA > 0; 通常工程上需要加速的气流速度一般为亚音速,入口处的气流速度已等于或高于当地音速的情况较少,所以渐扩喷管应用很少。
欲使气流在喷管中由亚音速连续增加到超音速,应选用缩放喷管(又称拉伐尔喷管) 。 在缩放喷管最小截面处(喉部), 流速恰好达到当地音速,Ma=1 ,dA=0,c=ca。 喉部参数称为临界参数,用下标“cr”表示,如临界流速ccr,临界压力pcr,临界温度Tcr等。 结论:渐缩喷管最多只能将气流加速到音速,缩放喷管可以加速到超音速。 扩压管与喷管正好相反。 液体例外:喷管渐缩;扩压管渐扩。
7―3 喷管中流速及流量的计算 一、出口流速 通常c1<< c2,当c1< 50 m/s 时, c1可忽略不计, 则 (以上公式使用条件:任意工质、任意过程)
对于理想气体 对于水蒸气,可查水蒸气表或图得 h1、h2。 在定熵条件下,若工质为理想气体,可进一步化为 c2 与工质性质、进口处的状态参数及压力比有关。
当 c1≥ 50 m/s 时,不能忽略 c1的影响,此时可在前面计算流速公式中代入实际的 c1,或在近似式中用 h0代替 h1。 二、 临界流速、临界压力比 1. 定义: 临界流速: ccr= ca (当地音速) 临界压力比: (当 c1 较小时,可用进口压力代替滞止压力,即
由 可推得
2.临界压力比的取值(仅取决于气体的热力性质)2.临界压力比的取值(仅取决于气体的热力性质) 理想气体: 单原子气:κ=1.67, 双原子气:κ=1.4, 多原子气:κ=1.3, 对于蒸汽,κ仅是一经验数据,有 过热蒸气:κ=1.3, 干饱和蒸气:κ=1.135 , 湿蒸气:κ=1.035 +0.1x 在喷管设计中, 是选择喷管外形的重要依据。
三、 喷管的选型原则(气体) 喷管的设计工况: ——节能 式中 pb——喷管出口处外界压力(背压) p2——出口截面上压力。 设 c1 < ca (通常c1较小,可用 p1 代替 p0),则当 1)c2≤ ca,即 时,选渐缩型喷管; 2)c2 > ca,即 时,选缩放型喷管。
结论:采用渐缩形喷管只能获得亚音速和音速气流,要想获得超音速气流,必须采用缩放形喷管。结论:采用渐缩形喷管只能获得亚音速和音速气流,要想获得超音速气流,必须采用缩放形喷管。 四、 流量的计算 对渐缩喷管, 将 c2、v2(理想气体)计算式代入得:
质量流量随压比的变化曲线见P.115 图7.3(改图题) 最大流量——以压比为自变量求极值,求得: 当 或
三、 喷管的选型原则(气体) 喷管的设计工况: ——节能 式中 pb——喷管出口处外界压力(背压) p2——出口截面上压力。 设 c1 < ca (且c1较小,可用 p1 代替 p0),则当 1)c2≤ ca,即 时,选渐缩型喷管; 2)c2 > ca,即 时,选缩放型喷管。
总结:对渐缩喷管 当 pb=pcr时: 时(应选缩放管,错选渐缩管的情况): 当 上述两种情况, 无论 pb如何降低, 流速和流量均不再变化。 当 pb>pcr时:
此时,pb降低, 流速和流量均增大。 对缩放喷管 质量流量与压比的关系见P.115 图7.3 其中右边抛物线实线段是渐缩喷管的流量变化规律, 左边水平实线段是缩放喷管的流量, 恒等于最大流量。
此时,pb降低, 流速和流量均增大。 对缩放喷管 质量流量与压比的关系见P.115 图7.3 其中右边抛物线实线段是渐缩喷管的流量变化规律, 左边水平实线段是缩放喷管的流量, 恒等于最大流量。 左边抛物线实线段是按公式(7.24)画出的几何曲线,没有物理意义。
五、蒸气的流动特点(小结) 1、过程方程中κ值不同,κ为经验值,不具有比热比的含义; 2、临界压力比计算公式同理想气体,只需代入蒸汽的κ值即可; 3、能量方程(计算流速)中 h 值应查蒸气表或图。
7―5 绝热节流 一、绝热节流:流体流通截面突然变小时,由于局部阻力增大而使流体压力降低的现象称为节流现象。因与外界的热交换量很小,工程上将其简化为绝热节流。 二、 能量方程 节流前后Ⅰ、Ⅱ两截面处焓相等。
S ↑, 节流是高度不可逆过程。 二、 各种参数的变化 1. 对理想气体: T1=T2 ,节流前后温度不变。 ∵ h1=h2,∴ 2. 对实际气体 三种可能:T1>T2,T1=T2,T1<T2。 3. s 的变化 4. 节流后压力下降,比容增加,但近似认为c1≈c2。