1 / 33

Neutrino Telescopes and Neutrinos from LHC

Neutrino Telescopes and Neutrinos from LHC. Rezo Shanidze University of Erlangen-Nuremberg & IHEPI, Tbilisi State University. ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi, Georgia. Neutrino Telescope. Detector for registration of high energy

abe
Download Presentation

Neutrino Telescopes and Neutrinos from LHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino TelescopesandNeutrinos from LHC Rezo Shanidze University of Erlangen-Nuremberg & IHEPI, Tbilisi State University ISPM – 2005 Physics at the future colliders 17-21/10/2005, Tbilisi, Georgia

  2. Neutrino Telescope Detector for registration of high energy extra-terrestial neutrinos. High energy extra-terrestial radiation (cosmic rays, gamma radiation, neutrinos) – detected with the help of methods developed in particle physics. High Energy Astrophysics / Astroparticle Physics / Particle Astrophysics: understanding the nature of cosmic high energy phenomena. Energy of the highest energy CR: ECR > 1020 ev (108 TeV ~ x 10 7 LHC beam)

  3. Astroparticle Physics PAO H.E.S.S ANTARES Rezo shanidze

  4. The High Energy Cosmic Radiation gCMB Where and how Cosmic Particles get energy >1019 eV? gCMB Bottom-up models: gCMB Cosmic accelerators - gCMB Most energetic astrophysical Objects: AGN, GRB, SN,…? gCMB Top-down models: Decays of heavy particles, …?

  5. UHECR: EAS/Fluorescence Ei (AGASA/HiRes) Extensive Air Showers EAS Ei(xi,ti) g E(m0,Q,f) MC codes: HEMAS,CORSIKA,… Ep> 1019 eV: p +gCMBg Np GZK cut-off Greisen- Zatsepin- Kuzmin Fluorescence GZK cut-off ? Rezo shanidze

  6. Cosmic Ray Sources ? AGASA UHECR: E> 4 x 1019eV (72 events) 4-10 x1019 eV, E>1020 eV (11 events) ApJ, 522(1999), 225 UHECR and VHE g propagation is affected by CMB radiation. High Energy cosmic neutrinos do not Interact with CMB ! Galactic plane survey by H.E.S.S. VHE g ( > 200 GeV ) p g g g or e + g ge + g ? (Inverse Compton Scattering)

  7. High Energy n-Astronomy Sources of high energy cosmic n: Weak decays of hadrons cosQc= pgm nm 1/bn nm : ne : nt=2 : 1 : 0 m ge nmne n -interactions: n nm :ne : nt =1 : 1 : 1 m(n) W(Z) • + Ngm(n)+X PDF nm CC intearctions: High energy m has a longe range (~ km) in water/ice and produce Cherenkov radiation. • t ~ s0E0.363 s0=7.84x1036cm2 Rezo shanidze

  8. Rezo shanidze

  9. Baukal NT First n Telescope Baikal Neutrino Telescope Russia/Germany (INR, MSU, JINR, … /DESY Zeuthen) BAIKAL NT (36, 96, 192) 1.1 km depth Started: 1993 Fisrt n event 1998-1999 Data 4 km from shore 1070 m deep Rezo shanidze

  10. AMANDAn DetectorAntarctic Muon And Neutrino Detector Array (http://amanda.uci.edu) Location: South Pole Collaboration of 19 Instititions from US/Europe/ Venezuela AMANDA B10 (97-99): 10 strings, 302 OM AMANDA II (2000): 19 strings 677 OM Rezo shanidze

  11. ANTARES n-Telescope for high energies: Qs < 0.3o (Quality of water!) 12 lines 25 storeys/line 3 PMT/storey 900 PMT 0.1 km2 14.5m 2005-2007: deployment of the full detector Rezo shanidze

  12. Rezo shanidze

  13. The Sky View for High Energy NT ANTARES - 2/3 of time: Galactic Centre ANTARES AMANDA Rezo shanidze

  14. High Energy Neutrino Telescopes Baikal ANTARES NESTOR NEMO AMANDA/IceCube Rezo shanidze

  15. km3 scale NT: IceCube @South Pole http://icecube.wisc.edu Collaboration: 9 countries, 26 Institutions. 80 str./ 4800 OM (2010+) Instrumented volume: 1 km3 ~80.000 atm./y Rezo shanidze

  16. The KM3NeT Project KM3NeT project is EU-funded Design Study for km3 NT in the Mediterranenan Sea Consortium: 8 EU countries / 35 Institutions Coordinated by Erlangen University Time Schedule: 02/2006: Start of Design Study mid-2007: Conceptual Design Report End-2008: Technical Design Report 2009-13: Constraction From 2010: Data Taking

  17. High Energy Accelerator Neutrinos Accelerator neutrinos with well defined energy spectra : - significantly improve Neutrino Telescope performance - important role in neutrino physics. VLVnT - sensitive to high energy neutrinos (above ~ 50-100 GeV ) Currently several experiments performed/ planned with high energy accelerator neutrinos: K2K, NuMI/MINOS, CNGS, T2K Long-baseline neutrino experiments.

  18. KM3NeT Design Study • MC simulations in Erlangen: Testing different concepts and options for photodetectors/Optical Modules and design geometry. 2nd Workshop on Very Large Volume neutrino Telescopes Catania, 8-11/2005 Rezo shanidze

  19. Long-baseline n Beams Neutrino telescopes: 103-106 ND ANTARES - ~ 10 Mtone KM3NeT ~ 1Gtone (109 m3 ) E(LHC) > 17.5 E (SPS) Rezo shanidze

  20. NuMI/MINOS Experiment R.Plankett (FNAL), 23/02/2005 Talk @ XI International Workshop on Neutrino Telescopes p gm nm , lp=g ct, g=Ep/mp, ct=7.8m 2.5 1013 p/pulse (1.9s) nm CC Events in MINOS 5kt detector (2.5 x1020 POT/y) Low ~ 1600/yr Medium ~ 4300/yr High ~ 9250/yr Rezo shanidze

  21. NT projects for Mediterranean ANTARES NESTOR NEMO KM3NeT Rezo shanidze

  22. Large Hadron Collider LHC@CERN - from 2007 Beam energy: - 7000 GeV Protons per beam: 4 x1014 • Beam lifetime 14.9 h • Protons/year = • 200 d x(24/14.9)x41014=1.3x1017 • How LHC beams are used: • 1) High Luminosity pp interaction: • ATLAS, CMS exprerimets (~10%) • 2) Low Luminosity pp interaction: • ALICE, LHC-b • 3) Unused (dumped) ( ~ 80%) Rezo shanidze

  23. Neutrinos from High Energyproton-proton Interactions • Neutrino sources: • - Weak decays of hadrons: • unflavored: neutrons, p • Flavored : strange, charm, • bottom • Decays of leptons (m, t) and weak • bosons (W, Z)

  24. Charged Pions and Flavored Particles Charged pions: p (139.5 MeV) BR ( p g mn) = 100 %, l=gct , ct=7.8 m Strange Particles: K(493.7 MeV), KL (497.6) BR(K gmn ) = 63.34 % , ct= 3.7 m BR(KLgpen ) = 38.81 % , ct=15.8 m BR(KLgpmn ) = 27.12 % Charmed mesons: Do(1.865 GeV ), D(1.869 ) , Ds (1.968) BR(Dog eX)=6.9 % ct=123 mm BR(DogmX)=6.5 BR(D±g eX)=17.2 % ct=312 mm

  25. The LHC Interaction Points Beam dumping Arrea pA,14.9 h (Dt: 86 ms), Ecm=114 GeV pp – 25 ns, ~ 109 pp/s, Ecm=14 TeV

  26. Neutrinos from High Luminosity IR • pp interactions @ 14 TeV: PYTHIA 6.2 (minimal bias interactions) • spp=100 mb , ~ 50 p/ pp E ~ 360 GeV 1 mrad angle: • beam pipe: R=25 10-3 m, L=23 m, ~ 1 p/pp, Ep ~ 900 GeV Decay probability: w(p)=1-exp(-L/glp) ~ L/glp , gp=Ep/mp • w(Ep=100 GeV) ~ 4 10-3 • ~ 106nm / sec (X 2 p beams X 2 IR)

  27. Charm Production at LHC ppg 2HC + X gn + X • Charm production at high energies: • Diffractive production (soft process) • - gluon-gluon, quark-antiquark sub-process (QCD) N P Caclucable in QCD: Implemented in MC (PYTHIA) Q P Q

  28. Neutrinos from High Luminosity IR • Neutrinos from • different sources: • a) from p decays • b) from K decays • c) from Charm • particles

  29. Neutrinos from Beam Dumpimg System pA interactions at 114 GeV High energy neutrinos from charmed particles. p - absorbed, strange particles – multiple interctions before decay

  30. Event Rates in Neutrino Telescopes Nn=∫ F(En) sn(En) M(En) NAe(En) dEn F(En) neutrino flux sn(En) neutrino cross-section M(En)=Veff(En)r detector target mass NA Avogadro number e(En) neutrino detection efficiency Nn=∫ F(En)Aeff(En) dEn

  31. Effective Arrea for a Future Mediterranean NT NT: Aeff(En,Q)= Veff(En,Q) (r NA) s(En) e(En)

  32. Neutrino Event Rates • m-neutrino • CC event • Rates in km3 • NT as a function • of energy. • L=1000 km • pp neutrinos • beam dump • neutrinos KM3NeT

  33. Summary and Outlook • LHC proton beams will produce large flux of high energy neutrinos. • A future VLVnT (KM3NeT) in Mediterranean Sea can detect large statistics of LHC neutrinos. • Feasibility study for LHC/KM3NeT neutrino experiment is necesary.

More Related