1 / 37

Doris Eckstein 3 , Joachim Erfle 1 , Eckhart Fretwurst 1 , Erika Garutti 1 ,

Impact of proton irradiations with different particle-energies on the electrical properties of Si-diodes. Doris Eckstein 3 , Joachim Erfle 1 , Eckhart Fretwurst 1 , Erika Garutti 1 , Alexandra Junkes 1,2 , Coralie Neubüser 1 , Georg Steinbrück 1 , Thomas Pöhlsen 1 1 Hamburg University

aaralyn
Download Presentation

Doris Eckstein 3 , Joachim Erfle 1 , Eckhart Fretwurst 1 , Erika Garutti 1 ,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Impact of proton irradiations with different particle-energies on the electrical properties of Si-diodes Doris Eckstein3, Joachim Erfle1, Eckhart Fretwurst 1, Erika Garutti 1, Alexandra Junkes1,2, Coralie Neubüser1, Georg Steinbrück 1, Thomas Pöhlsen 1 1Hamburg University 2Brown University 3DESY 20th RD50 Workshop

  2. Neff for irradiated HPK & RD50 Diodes 23 GeVprotonirradiated n-type material Hamamatsu diodes RD50 diodes 23 MeVprotonirradiation 23 GeVprotonirradiation n-type p-type E. Fretwurst, RD50 Workshop CERN, 2003 Type inversionfor 200 µm MCzn-type No type inversionfor 300 mm MCz 20th RD50 Workshop

  3. Unexpected type inversionof HPK MCZ n-type Cross check! 23 MeVprotonirradiation 23 GeV PS 23 MeV KA n-type RD50 Sensors HPK Sensors Type inversion No type inversion RD50 Sensors HPK Sensors p-type ? ? ? ? Type inversion No type inversion No type inversion Type inversion Type inversionfor 200 µm MCzn-type • Radiation induced defects depend on the MCz material or • 23 MeV protons create different defects than 23 GeV protons 20th RD50 Workshop

  4. Comparisonbetween 23GeV and 23MeV p CV curvesofirradiated HPK material: measureddirectlyafter irradiation Фneq≈ 3E14 cm-² MCZ200N (MagneticCzochalski,200μm,n-type) FZ200N (Float Zone, 200μm, n-type) ΔVdpl = 43V ΔVdpl = 30V Big difference in thedepletionvoltage for both type of material 20th RD50 Workshop

  5. Annealingof FZ200N Фneq = 3.13E14 cm-² „Short termannealing“: createdonorsorratherannealacceptors FZ200N: →showsp-type behaviourafter 23GeV and 23MeV protonirradiation c 20th RD50 Workshop

  6. Annealingof MCZ200N Фneq = 3.13E14 cm-² MCZ200N: Big difference in depletionvoltage → Neff Wewereabletoextractmoreinformationbymeansof TCT measurements c 20th RD50 Workshop

  7. CCEfor MCZ200N: 23MeV p Measurement details: Red laser (670 nm), 0°C CCE MCZ200N non-irradiated MCZ200N irradiatedwith 23MeV p withФneq = 2.93E14 cm-² annealedto 10min@60°C 20th RD50 Workshop

  8. CCEfor MCZ200N: 23MeV p Measurement details: Red laser (670 nm), 0°C Front sideillumination: electrondrift CCE p+ - + + + + + + + + + - - - - - - - - - - - - - - - + n+ Non-irradiated: Front: Charge fully collected before Vdep reached → Depletion from front 20th RD50 Workshop

  9. CCEfor MCZ200N: 23MeV p Measurement details: Red laser (670 nm), 0°C Front sideillumination: electrondrift CCE ≈ 65% p+ - + + + + + + + + + - - - - - - - - - - - - - - - + n+ Irradiated with 23MeV: Front: charge loss 35%, 50% of charge collected when depletion voltage is reached Vdpl= 58V Фneq=2.93E14 p/cm² 20th RD50 Workshop

  10. CCEfor MCZ200N: 23MeV p Measurement details: Red laser (670 nm), 0°C Rearsideillumination: hole drift CCE p+ - +++ +++ +++ +++ +++ + - - - - - - - - - n+ Non-irradiated: Rear: Charge collection only after full depletion → Depletion from front 20th RD50 Workshop

  11. CCEfor MCZ200N: 23MeV p Measurement details: Red laser (670 nm), 0°C Rearsideillumination: hole drift CCE ≈ 90% p+ - +++ +++ +++ +++ +++ + - - - - - - - - - n+ Irradiated with 23MeV: Rear: charge loss 10%, strong increase of CCE also before full deletion is reached Vdpl= 58V Фneq=2.93E14 p/cm² 20th RD50 Workshop

  12. CCEfor MCZ200N: 23MeV p Measurement details: Red laser (670 nm), 0°C CCE Фneq= 2.93E14 cm-² Irradiated with 23MeV: Charge collection mainly from the rear side → Higher electric field on the back side → inversion to p-type Vdpl= 58V 20th RD50 Workshop

  13. CCEfor MCZ200N: 23GeV p Measurement details: Red laser (670 nm), 0°C CCE Non-irradiated: Front: Charge fully collected before Vdep reached Rear: Charge collection only after full depletion → Depletion from front non irradiated front side non irradiatedrearside 20th RD50 Workshop

  14. CCEfor MCZ200N: 23GeV p Measurement details: Red laser (670 nm), 0°C CCE Фneq= 3.13E14 cm-² Irradiated with 23GeV: Front: Still reasonable high signal before Vdpl Rear: Signal present also at low voltages but much smaller than front → Double junction effect front sideillumination rearsideillumination Vdpl = 98V annealedto 1min@80°C 20th RD50 Workshop

  15. CCEfor MCZ200N: 23MeV versus 23GeV 23MeV, Фneq=2.93E14 p/cm²+10min@60°C 23GeV,Фneq= 3.13E14 cm-² +1min@80°C CCE CCE frontsideillumination rearsideillumination rearsideillumination front sideillumination rearsideillumination Vdpl= 58V Vdpl = 98V • behavelike p-type • high electricfield on the back side • behavelike n-type, but shows a strong double junctioneffect 20th RD50 Workshop

  16. Electricfieldfor MCZ200N Scetch of the electric field through the sensor • theE-fieldis not linear throughthevolumeanymore • forthe 23MeV wedepletefrombothsides • for 23GeV strongerdouble junctioneffect • (in themeasurements) A. Dierlamm 20th RD50 Workshop

  17. Neffof MCZ200N & FZ200N annealedto 10min@60°C/1min@80°C Neff out ofVdpl (CV) Sign for Neffout ofannealingstudyand TCT measurements Big difference in Neff! 20th RD50 Workshop

  18. Neffof MCZ200N & FZ200N annealedto 10min@60°C/1min@80°C Neff out ofVdpl (CV) Sign for Neffout ofannealingstudyand TCT measurements Big difference in Neff! Doesthe HPK material influenceradiationinduceddefects? 20th RD50 Workshop

  19. Nefffor RD50 & HPK MCZ Thelowenergyprotons (23MeV) seemtocreatemoreacceptor-likedefects, orlessdonor-likeonesthenthe high energyprotons (23GeV) do. → we conclude that thebehaviourofthe MCZ200N from Hamamatsu isrelatedtotheprotonenergy 20th RD50 Workshop

  20. Explanation: defectswithimpact on Neff High numberofpointdefects Simulation: Distribution of vacancies after Fneq=1x1014cm-2 Point andclusterdefects Thermally Stimulated Current - spectra: 23 GeVp 10 MeVp M. Huhtinen, Simulation of non-ionisingenergyloss and defectformation in silicon, Nuc. Instr. & Meth. In Phys. Res. 2002 23 GeVprotonscreatemuchmoreshallow DonorsE30Kthan 1 MeVneutrons, thisovercompensatesdeepacceptor generationofH-defectsfor23 GeVprotons → notype inversionfor 23 GeVprotons I. Pintilie et al. NIM A 611 (2009) 52 20th RD50 Workshop

  21. Explanation: defectswithimpact on Neff Simulation: Distribution of vacancies after Fneq=1014 cm-2 23 GeVp 10 MeVp M. Huhtinen, Simulation of non-ionisingenergyloss and defectformation in silicon, Nuc. Instr. & Meth. In Phys. Res. 2002 I. Pintilie et al. NIM A 611 (2009) 52 • Toidentifytheimpactoftheprotonenergy on thedefectgeneration: • TSC measurements on 23 MeVirradiatedsamplesneeded 20th RD50 Workshop

  22. Future plans GeV The HPK campaign will do additional protonirradiationsatthe PS with 23GeV! Pion damage dominant in inner region (similar to GeV proton damage) Pion energies in the range of a few hundred MeV to GeV → investigating other proton sources with comparable energies EnergySpectrum for CMS M. Huhtinen, Radiation Effects Course: 10 April 2000 20th RD50 Workshop

  23. Summary: • protonirradiationwith different particleenergieshave an impact on theelectricalprobertiesofthedetector • (shown for MCZ and FZ) • Microscopicstudiesofthedefectswithimpact on theeffectivedopingconcentrationarenecessary • (furthersamples will beirradiatedwith 23MeV tomeasure TSC-spectra) • Systematicstudiesofirradiationswithprotonsof different energieswouldheldtogain a betterunderstandingofthedefectcreationmechanismandthedefectproperties 20th RD50 Workshop

  24. Back up: 20th RD50 Workshop

  25. TCT-pulse MCZ200N: 23GeV p Measurement details: Red laser (670 nm), 0°C Rearillumination: Holedrift 200V non-irradiated Фneq= 3.13E14 cm-² annealedto 1min@80°C Irradiated with 23GeV: Rear: Signal present also at low voltages but much smaller than front → Double junction irradiated 20th RD50 Workshop

  26. TCT-pulse MCZ200N: 23GeV p Measurement details: Red laser (670 nm), 0°C Front illumination: Electrondrift 100V non-irradiated Фneq= 3.13E14 cm-² annealedto 1min@80°C Irradiated with 23GeV: Front: Still reasonable high signal before Vdpl → Double junction irradiated 20th RD50 Workshop

  27. TCT-pulse MCZ200N: 23GeV & 23MeV p Measurement details: Red laser (670 nm), 0°C Rearillumination: Hole drift 23MeV 23GeV 23GeV: Strong double junction effect 23MeV: High electic field on the back side Фneq≈ 3E14 cm-² annealedto8min@80°C/80min@60°C 20th RD50 Workshop

  28. Annealingof p-type: 23GeV vs. 23MeV p MCZ200Y & FZ200Y: The p-type material stays p-type after bothprotonirradiations Фneq= 2.93E14 cm-² Фneq= 3.13E14 cm-² 20th RD50 Workshop

  29. CCEfor MCZ200N: 25MeV p + 8min@80°C 10min@60°C 80min@60°C rearsideillumination Charge collectionbehaviour turn around! front sideillumination Vdpl= 58V Vdpl= 45V After theannealingto 80min@60°C thechargecollectionfromthe front siderisesupagain! 20th RD50 Workshop

  30. TCT for MCZ200N: 25MeV p + 8min@80°C TCT pulse: rearsideilluminationwithredlaserat 300V 10min@60°C 80min@60°C Фneq= 2.93E14 cm-² Фneq= 2.93E14 cm-² Doestheslopeofthe pulse changethesign? 20th RD50 Workshop

  31. Neff ofthe RD50 material Front sideillumination: electronsaredriftingthroughthebulk RD50 Si-diodes (asirradiated) Vdpl = 48V Vdpl = 57V Фneq= 1.2E14 cm-²: The chargearemainlygettingcollected just after depletion Vdpl = 274V 20th RD50 Workshop

  32. TCT-pulses ofthe RD50 material TCT pulses: front sideilluminationwithredlaserat 100V and 700V 20th RD50 Workshop

  33. Messergebnisse n-Typ nach Bestrahlung Annealing-Studie (80°C) an 75μmEpi-DO protonenbestrahlt neutronenbestrahlt • n-Typ zeigt typischen Anstieg der Verarmungsspannung, „shorttermannealing“: • Donatoren werden gebildet oder Akzeptoren heilen aus • -> keine Typeninversion Zwischen den Fluenzen von 6E14 und 1E15 dreht sich das Anfangsverhalten um (siehe p-Typ) -> Typeninversion 20th RD50 Workshop

  34. Strahlenbelastung am HL-LHC Lint=3000 fb-1@14 TeV Strahlenschaden durch Pionen dominant • Strahlenbelastung für: • innere Pixelsensoren • Feq≈ 2x1016 cm-2 • innere Streifensensoren • Feq ≈1x1015 cm-2 Pionen/Neutronen Mischung Strahlenschaden durch Neutronen dominant Teilchenfluenz (1/cm2) Strahlenschäden von Pionen sind vergleichbar mit denen von Protonen. Pixels Strips -> Suche nach passenden Materialien für unterschiedliche Strahlenbelastung! 20th RD50 Workshop

  35. Oxygen profiles: SIMS High O for MCz [O]=4-6E17 cm-3 High O for FZ [O]=2-4E17 cm-3 SIMS: ITME 20th RD50 Workshop

  36. Do 23 GeV p simulate 300 MeV π? RD50 MCz RD50 FZ About 25 V @3E14neq. K.Kaska: 15th RD50 workshop, CERN, 2009 No difference observed Yes for low O material Quite ok for high O No type inversion for MCz after π 20th RD50 Workshop

  37. 20th RD50 Workshop

More Related