Chapter 7 The Other Sensory Systems - PowerPoint PPT Presentation

Thomas
chapter 7 the other sensory systems l.
Skip this Video
Loading SlideShow in 5 Seconds..
Chapter 7 The Other Sensory Systems PowerPoint Presentation
Download Presentation
Chapter 7 The Other Sensory Systems

play fullscreen
1 / 43
Download Presentation
Chapter 7 The Other Sensory Systems
643 Views
Download Presentation

Chapter 7 The Other Sensory Systems

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Chapter 7 The Other Sensory Systems

  2. Physical stimulus: sound waves Sound waves are periodic compressions of air, water or other media. Sound waves are “transduced” into action potentials sent to the brain. Audition: The Sense of Hearing

  3. Amplitude refers to the height and subsequent intensity of the sound wave. Loudness refers to the perception of the sound wave. Amplitude is one factor. Audition

  4. Frequency refers to the number of compressions per second and is measured in hertz. Related to the pitch (high to low) of a sound. Audition

  5. The ear is divided into 3 parts: Outer ear Middle ear Inner ear Anatomy of the Ear

  6. The outer ear includes: pinna (pl: pinnae) (A): focus sound waves into middle ear help locate the source of a sound external auditory canal (B): pathway to middle ear Neuroanatomy Handout #5: The Auditory System

  7. The middle ear includes: Tympanic membrane(C) (eardrum) vibrates when struck by sound waves 3 middle ear bones transmit information to the inner ear: malleus (D) incus (E) stapes (F) Neuroanatomy Handout #5: The Auditory System

  8. The inner ear includes: Oval window (G): a second membrane, like the eardrum Semicircular canals (H): part of the vestibular system, involved in balance and equilibrium Neuroanatomy Handout #5: The Auditory System The Inner Ear

  9. Cochlea (I): a snail shaped structure containing three fluid-filled tunnels auditory receptors (hair cells) Neuroanatomy Handout #5: The Auditory System

  10. (A,B) frogs (C) cat (D) lizard Hair cells:auditoryreceptors Fig. 7-3, p. 192

  11. Organ of Corti (K) Hair cells and two surrounding membranes in the cochlea Neuroanatomy Handout #5: The Auditory System

  12. Hair cells(K1): auditory receptor cells Supporting cells (K2): attached to flexible basilar membrane (L) Tectorial membrane (J) is more rigid and runs along other end of hair cells The Organ of Corti

  13. Auditory nerve (M) exits the inner ear and carries information about sound to the auditory cortex Audition

  14. Frequency theory - the basilar membrane vibrates in synchrony with the sound and causes auditory nerve axons to produce action potentials at the same frequency. Place theory - each area along the basilar membrane is tuned to a specific frequency of sound wave. Theories of Pitch Perception

  15. Theories of Pitch Perception • The current pitch theory combines modified versions of both the place theory and frequency theory: • Low frequency sounds best explained by the frequency theory. • High frequency sounds best explained by place theory.

  16. Theories of Pitch Perception • Volley principle states that the auditory nerve can have volleys of impulses (up to 4000 per second) even though no individual axon approaches that frequency by itself. • provides justification for the place theory

  17. Which part of the brain helps process information about hearing? Primary auditory cortex located in the superior temporal cortex Each hemisphere receives most of its information from the opposite ear. Audition

  18. The primary auditory cortex provides a tonotopic map cells are responsive to preferred tones Damage can lead to deficits processing auditory info: loss of ability to identify a song or voice It does not result in a loss of hearing Audition

  19. Hearing Loss • About 99% of hearing impaired people have at least some response to loud noises. • Two categories of hearing impairment include: • Conductive or middle ear deafness • Nerve deafness

  20. Conductive or middle ear deafness: Bones of middle ear fail to transmit sound waves properly to cochlea Caused by disease, infections, or tumerous bone growth near the middle ear. Can be corrected by surgery or hearing aids that amplify the stimulus. Hearing Loss

  21. Nerve or inner-ear deafness: Results from damage to cochlea, hair cells or auditory nerve Can be confined to one part of the cochlea people can lose certain frequencies Can be inherited or caused by prenatal problems or early childhood disorders Hearing Loss

  22. Tinnitus: frequent or constant ringing in the ears Experienced by many people with nerve deafness Sometimes occurs after damage to cochlea Audition

  23. Sounds that cause hearing loss • Heavy city traffic = 90 decibels • Car horn = 110 decibels • Headphones = 120 decibels (common volume) • Jackhammer = 130 decibels • Rock band at close range = 140 decibels • Rocket launching = 180 decibels

  24. The Mechanical Senses • Mechanical senses respond to pressure, bending, or other distortions of a receptor. • Mechanical senses include: • Vestibular sensation (balance) • Touch • Pain • Other body sensations

  25. The Mechanical Senses • The vestibular sense refers to the system that detects the position and the movement of the head. • Directs compensatory movements of the eye and helps to maintain balance.

  26. Vestibular organ: in inner ear, adjacent to cochlea, consists of: two otolith organs calcium carbonate particles (otoliths) activate hair cells when head tilts three semicircular canals oriented in three different planes filled with jellylike substance that activates hair cells when the head moves The Mechanical Senses

  27. Which part of the brain helps process information about our vestibular sense? Angular gyrus integrates balance and movement info with other sensations Located at border between parietal and temporal cortex The Mechanical Senses

  28. The Mechanical Senses • Somatosensory system refers to sensation of the body and its movements and includes: • discriminative touch • deep pressure • cold • warmth • pain • itch • tickle • position and movement of joints

  29. The Mechanical Senses • Touch receptors can be: • simple bare neurons • elaborated neuron ending • bare ending surrounded by non-neural cells that modify its function Fig. 7-11, p. 201

  30. Pacinian corpuscle: type of touch receptor that detects sudden displacement or high-frequency vibrations on skin Mechanical pressure bends membrane increases flow of sodium ions and triggers an action potential The Mechanical Senses

  31. Which part of the brain helps process information about touch? Somatosensory cortex of parietal lobe Info from touch receptors in head enters CNS through cranial nerves Info from receptors below head enters spinal cord and travels through spinal nerves to brain The Mechanical Senses

  32. 31 spinal nerves each has a sensory component and a motor component connects to a limited area of the body Dermatome: the skin area connected to a single sensory spinal nerve The Mechanical Senses

  33. The Mechanical Senses • Pain depends on many axon types, neurotransmitters, and brain areas. • Mild pain triggers the release of glutamate. • Strong pain triggers the release of glutamate and substance P. • Substance P results in the increased intensity of pain. • Morphine and opiates block pain by blocking these neurotransmitters.

  34. Taste refers to the stimulation of taste buds by chemicals. Our perception of flavor is the combination of both taste and smell. Taste and smell axons converge in the endopiriform cortex. The Chemical Senses: Taste

  35. The Chemical Senses: Taste • Taste receptors • modified skin cells • excitable membranes release neurotransmitters and excite neighboring neurons • replaced every 10 to 14 days

  36. Papilla(e): structure(s) on surface of tongue that contain up to 10 taste buds Each taste bud contains approx. 50 receptors Most taste buds are located along the outside of the tongue in humans. The Chemical Senses: Taste

  37. Western societies have traditionally described sweet, sour, salty and bitter tastes as the “primary” tastes and four types of receptors. Evidence suggests a fifth type of glutamate receptor. The Chemical Senses: Taste

  38. Various areas of the brain are responsible for processing different taste information. Somatosensory cortex responds to the touch aspect of taste The insula is the primary taste cortex. The Chemical Senses: Taste

  39. Olfaction: detection and recognition of chemicals that contact membranes inside the nose Olfactory cells: receptor cells for smell Olfactory epithelium: membrane in rear of nasal passage Contains olfactory cells The Chemical Senses: Smell

  40. The Chemical Senses: Smell • Which part of the brain helps process information about smell? • Axons from olfactory receptors carry information to the olfactory bulb in the brain. • The olfactory bulb sends axons to many areas of the cerebral cortex. • Coding in the brain is determined by which part of the olfactory bulb is excited.

  41. The Chemical Senses: Smell

  42. The Chemical Senses: The VNO • Vomeronasal organ (VNO): set of receptors located near the olfactory receptors that are sensitive to pheromones • Pheromones: chemicals released by an animal to affect the behavior of others of the same species • The VNO and pheromones are important for most mammals, but less so for humans • It is tiny in human adults and has no receptors. • Humans unconsciously respond to some pheromones through receptors in the olfactory mucosa. • Example: synchronization of menstrual cycles

  43. Synesthesia is the experience of one sense in response to stimulation of a different sense. Suggests some axons from one area have branches to other cortical regions. Integration of the Senses