alex cuclis houston advanced research center harc l.
Skip this Video
Loading SlideShow in 5 Seconds..
Alex Cuclis Houston Advanced Research Center (HARC) PowerPoint Presentation
Download Presentation
Alex Cuclis Houston Advanced Research Center (HARC)

Loading in 2 Seconds...

play fullscreen
1 / 16

Alex Cuclis Houston Advanced Research Center (HARC) - PowerPoint PPT Presentation

  • Uploaded on

Particulate Matter: What Floats in the Air?. Alex Cuclis Houston Advanced Research Center (HARC). What Floats in the Air ?. Particulate Matter Total Suspended Particulates Aerosols Haze. What Floats in the Air ?.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Alex Cuclis Houston Advanced Research Center (HARC)' - Thomas

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
what floats in the air
What Floats in the Air?
  • Particulate Matter
  • Total Suspended Particulates
  • Aerosols
  • Haze
what floats in the air3
What Floats in the Air?

Particulate matter consists of tiny particles in the atmosphere that can be solid or liquid (except for water or ice) and is produced by a wide variety of natural and manmade sources.

size matters
Size Matters
  • Total Suspended Particulates (TSP) range from 0 – 50 microns
  • Human hair is about 70 microns in diameter.
  • > 50 micron particulates tend to settle out of the air.
size matters5
Size Matters
  • PM10 – “PM50” – too large for respiratory system
  • PM2.5 – PM10 - can enter lungs through mouth.
  • PM2.5 and less – can enter lungs through nose.
primary and secondary pm
Primary and Secondary PM
  • “Primary” particles, such as dust from roads or elemental carbon (soot) from wood combustion, are emitted directly into the atmosphere.
  • “Secondary” particles are formed in the atmosphere from primary gaseous emissions. Examples include sulfates, formed from SO2 emissions from power plants and industrial facilities, and nitrates, formed from NOx emissions from power plants, automobiles, and other types of combustion sources.
sources of pm2 5
Sources of PM2.5
  • Primary mobile source emissions account for approximately 25-33% of fine PM mass.
  • Primary emissions from cooking account for approximately 10-15% of fine PM mass.
  • Primary point source emissions of fine particulate matter have not yet been estimated.
  • Secondary emissions of organic carbon and elemental carbon make up approximately 25-30% of fine PM mass. - Dave Allen
sources of pm10
Sources of PM10
  • Fly ash from power plants,
  • Carbon black from automotive industries
  • Various manufacturing processes,
  • Ash from wood stoves and fireplaces
  • Agriculture and forestry practices
  • Fugitive dust sources (paved and unpaved roads)

- Dave Allen

sources of pm109
Sources of PM10
  • In the U.S., PM10 emissions from fuel combustion, industrial processes, and transportation each contribute about one-third of the traditionally inventoried particulate source categories. These source categories, however, only account for 6% of total PM10 emissions nationwide. The vast majority of PM10 emissions are from natural sources, agriculture, forestry, wildfires, managed burning, and fugitive dust.
chemistry matters
Chemistry Matters

The chemical composition of particles depends on location, time of year, and weather.

The different constituents of PM are the result of very different types of emissions, and therefore, as emission reduction plans are developed to reduce health impacts of fine particulate matter, it will be important to understand whether particular chemical or physical properties of the PM are causing health impacts.

travel time matters
Travel Time Matters
  • How long?

PM10 particles can stay in the air for minutes or hours, while PM2.5 particles can stay in the air for days or weeks.

  • What distance?

PM10 particles can travel as little as a hundred yards or as much as 30 miles. PM2.5 particles can go many hundreds of miles.

travel time matters12
Travel Time Matters


  • The fires of Mexico
  • The Dust of Africa – at times makes up 50% of the breathable particles in Miami
travel time matters13
Travel Time Matters
  • Gravity is the driving force for settling, but does not control the rate of settling.
  • Many individual particles cannot be seen by the naked eye, but as a group they can be seen by satellites.
deposition matters
Deposition Matters
  • When it rains
  • Humidity
  • Wind Speed
  • Size
  • Composition/Chemistry
smoke from mexico
Smoke from Mexico

April 16,